Question Bank (G scheme)

Name of subject: Engg.Mathematics Unit Test :II

Subject code: 17216 Course: CM/IF/EJ/IE/IS

Semester: II

Chapter 1 (DERIVATIVE)[24 MARKS]

3 marks-

1) If
$$y = \sin^{-1}x$$
 Prove that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 0$

2) Find
$$\frac{dy}{dx}$$
 if $y = e^x \tan x$

3) Find
$$\frac{dy}{dx}$$
 if $y = \sec x \tan x$

4) Find
$$\frac{dy}{dx}$$
 if $y = \frac{\sin x}{1 - \cos x}$

5) Find
$$\frac{dy}{dx}$$
 if $y = \log(x^2 + 2x + 5)$

6) Find
$$\frac{dy}{dx}$$
 if $y = x^3 + xy^2 = y^3 + yx^2$

7) Find
$$\frac{dy}{dx}$$
 if $x = a \cos^3 \theta$, $y = b \sin^3 \theta$

8) Differentiate w.r.t. x : $7^{\sqrt{x^2+1}}$

4 marks-

1) Differentiate w.r.t.
$$x:y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

2) If
$$y = tan^{-1} \left(\frac{13 x}{1 - 42 x^2} \right)$$
 find $\frac{dy}{dx}$

3) If
$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 find $\frac{dy}{dx}$

4) Find
$$\frac{dy}{dx}$$
 if $\sin y = \log(x + y)$

5) If
$$e^x = y^x$$
 Prove that $\frac{dy}{dx} = \frac{(\log y)^2}{\log y - 1}$

6) If
$$y = e^{m \sin^{-1} x}$$
 Prove that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - m^2 y = 0$

7) Differentiate
$$(\sin x)^{\tan x}$$
 w.r.t. x

8) Differentiate
$$tan^{-1}\left(\frac{2x}{1-x^2}\right)$$
 w.r.t. $sin^{-1}\left(\frac{2x}{1+x^2}\right)$

Chapter- 2(NUMERICAL METHODS)[14 MARKS]

3 marks:

- 1) Find the approximate root of the equation $x^3 9x + 1 = 0$ lies between 2 and 3 using bisection method (Two Iteration)
- 2) Using Bisection method find the approximate value of $\sqrt{10}$ perform two Iteration
- 3) By using method of False Position find root of equation $x^2 + x 1 = 0$ in the interval (0,1) (perform two Iteration)
- 4) Solve following equations for x and y using Gauss-Elimination Method

$$x + y + z = 4$$
; $2x + y + z = 5$; $3x + 2y + z = 7$

5) Solve following equations for y and z using Gauss-Elimination Method

$$x + y + z = 6$$
; $3x - y + 3z = 10$; $5x + 5y - 4z = 3$

- 6) Show that root of the equation $x \cdot \log x = 1.2$ lies between (1,2)
- 7) Show that root of the equation $3x \cos x 1 = 0$ lies between (0,1)

4 marks:

8) Solve using Gauss-Elimination Method:

$$2x - 3y + 4z = 7$$
; $5x - 2y + 2z = 7$; $6x - 3y + 10z = 23$

9) Solve using Jacobie's Method:

$$10x + y + 2z = 13$$
; $3x + 10y + z = 14$; $2x + 3y + 10z = 15$

10) Solve using Jacobie's Method:

$$5x - y + z = 10$$
; $2x + 4y = 12$; $x + y + 5z = -1$

11) Solve using Gauss-Seidal Method:

$$10x + y + z = 12$$
; $x + 10y + z = 12$; $x + y + 10z = 12$

12) Solve using Gauss-Seidal Method:

$$20x + y - 2z = 17$$
; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$

- 13) Find approximate root of the equation $x^3 2x 5 = 0$ using Bisection method in the interval (2,3) carry out three iterations.
- 14) Find approximate root of the equation $x^3 + 2x^2 8 = 0$ using Regula Falsi method carry out three iterations.
- 15) Evaluate $\sqrt[3]{7}$ using Newton Raphson Method carry out two iterations.