BHARATI VIDYAPEETH INSTITUTE OF
 TECHNOLOGY Question Bank (I-Scheme)

Name of subject: Theory of Structure 22402 Course: CE Semester: IV

Unit 3 (Fixed Beam)

2 Marks

1. Explain the principle of superposition and state the application of it.
2. Write the formulae of fixed end moments for a fixed beam carrying eccentric point load 'W', also draw the beam.
3. A Uniform beam $A B$ of span 6 m is fixed at A and B. it is loaded with a UDL of 3 KN / m over the entire span. Calculate the fixed end moments.
4. A Uniform beam of 6 m span is fixed at A and B it carries UDL of $5 \mathrm{kN} / \mathrm{m}$ over the entire span and a concentrated point load of 3 kN at 3 m from left end support. Calculate the fixed and moments.
5. A Uniform beam of 5 m span is fixed at A and B it carries point load of 10 KN at 2 m from left support. Calculate the fixed and moments.

4 Marks

1. A fixed beam of span 6 m carries a UDL of $25 \mathrm{kN} / \mathrm{m}$ over the entire span and a central point load of 40 kN . Calculate the support moments ,draw BMD.
2. A fixed beam of span 8 m carries a UDL of $25 \mathrm{kN} / \mathrm{m}$ over the entire span and a point load of 20 kN at 3 m from left support. Calculate the support moments ,draw BMD.
3. A fixed beam of span 7 m carries a point loaf of 50 KN at 4 m from left support.Calculate the fixed end moments by using first principle.Dram BM diagrams.
4. A fixed beam of span 6 m carries two point loads 40 kN and ' W ' kN at 2 m and 4 m from left support respectively. Find 'W' such that fixed and moments at both ends are of same magnitude.
5. A fixed beam of span 6 m carries two point loads 40 kN and 50 kN at 1 m and 5 m from left support respectively. Find fixed and moments and draw BM diagrams.

Unit 4(Continuous Beam)

2 Marks

1. Define Continuous beam and draw its diagram.
2. How to solve continuous beam having fixed ends.
3. State and explain clapeyron's theorem of three moments having same MI.
4. Explain the concept of deflected shape in continuous beams.

4 Marks

1. A continuous beam $A B C D$ is simply supported at A, B, C and D such that $A B=6 \mathrm{~m}, \mathrm{BC}=8 \mathrm{~m}$ and $\mathrm{CD}=6 \mathrm{~m} . S p a n A B$ carries a UDL of $40 \mathrm{KN} / \mathrm{m}$ from A to B.Span BC carries a central point load of 30 KN and span CD carries a point load of 15 KN at 2 m from support D.Draw bending moment diagram. Use Clapeyron's theorem of three moments.
2. A continuous beam $A B C$ consists of two spans $A B$ and $B C$ of $6 m$ and $8 m$ respectively.The end supports are simple.The span AB carries a central point load and span BC carries a point load of 20 KN at 5 m from right support.Draw BM diagrams using Clapeyron's theorem.
3. A continuous beam $A B C$ is simply supported at A, B and C such that $A B=B C=4 \mathrm{~m} . S$ pan $A B$ carries a UDL of $40 \mathrm{KN} / \mathrm{m}$ from A to B.Span BC carries a central point load of 30KN.Draw bending moment diagram.Use Clapeyron's theorem of three moments.
4. Calculate the support moments Ma, Mb and Mc in case of a continuous beam fixed at A and C and continuous over support $B \cdot A B=6 m, A C=9 m . S p a n$ AB carries UDL of $15 \mathrm{KN} / \mathrm{m}$ from A to B and Span BC carries central point load of 10KN. Use Clapeyron's theorem.
5. A continuous beam $A B C D$ is simply supported at A, B and C with $C D$ as overhang.Span $A B$ is loaded with UDL of $4 \mathrm{KN} / \mathrm{m}$ and span $B C$ is loaded with a central point load of 10KN.A point load of 5 KN is acting at D.Find out the support moments and dram BMD.
Consider $A B=6 m, B C=8 \mathrm{~m}$ and $C D=2 \mathrm{~m}$. Use Clapeyron's theorem of three moments.
6. A beam $A B C D$ is fixed at A and simply supported at B and $C . C D$ is overhang. $A B=B C=5 m, C D=2 m$.Span $A B$ carries a UDL of $7 \mathrm{KN} / \mathrm{m}$ on $A B$, a central point load of 30 Kn on $B C$ and a point load of 10 Kn at D . Find the support moments and draw bending moment diagrams.

Unit 5 (Moment Distribution Method)

2 Marks

1. Define Stiffness factor and write the values of Stiffness factor for beams:-
a)Simply supported at both ends
b)Fixed at one end and simply supported at other end.
2. Draw a neat sketch of symmetrical and un symmetrical portal frame.
3. Explain about carry over factor and give the value of carry over factor for following cases:-
a)Two ends simply supported
b)Both end fixed
4. Define Distribution factor and write the formula of it.

4 Marks

1. A continuous beam $A B C$ is supported at A, B and $C . A B=6 m, B C=5 m . A B$ carries a UDL of $35 \mathrm{KN} / \mathrm{m}$ and $B C$ carries a UDL of $30 \mathrm{KN} / \mathrm{m}$. Calculate the support moments and draw Bending moment diagrams.Use moment distribution method.
2. A continuous beam $A B C$ is supported at A, B and $C . A B=8 m, B C=6 \mathrm{~m} . A B$ carries a UDL of $10 \mathrm{KN} / \mathrm{m}$ and $B C$ carries a point load of 15 KN at centre. Calculate the support moments and draw Bending moment diagrams.Use moment distribution method.
3. A continuous beam $A B C$ is fixed at A and supported on B and C.Span $A B=5 m$ and $B C=4 \mathrm{~m} . A B$ carries a UDL of $20 \mathrm{KN} / \mathrm{m}$ and $B C$ carries a point load of 35 KN at its centre.Calculate the support moments and draw Bending moment diagrams.Use moment distribution method.
4. A continuous beam $A B C$ is fixed at A and B and continuous over support $B . A B=4 m, B C=5 \mathrm{~m} . A B$ carries a UDL of $5 \mathrm{KN} / \mathrm{m}$ and $B C$ carries a point load of 8 KN at 2 m from support C.Calculate the support moments and draw Bending moment diagrams.Use moment distribution method.
