Question Bank of ASC(Physics)-312308 Unit Test -1 **SEM II for ME/CE/EE2K** 1). The force applied on a body which is responsible for change of size and shape of the body is called as (a) restoring force (b) deforming force (c) internal force (d) regaining force 2) In the case of elastic body, if external applied force is too large and it is more than elastic limit, then there will be (a) permanent retention (b) more opposition (c) permanent deformation (d) less opposition 3) The property on account of which body regains its original size and shape on removal of external deforming force is called as (a) plasticity b) elasticity c) rigidity d) ductility 4).Stress is defined as..... (a) internal elastic restoring force per unit area (b) area per unit internal elastic restoring force (c) product of internal elastic restoring force and area (d) none of these 5). Cable of lift elevator is the example of..... (c) lateral stress (d) shearing stress (a) longitudinal stress (b) volume stress 6). Shock absorber in a vehicle is an example of..... (b) tensile stress (c) volume stress (d) shear stress (a) longitudinal stress 7).One of the following is the example of shear stress..... (a) bycycle chain (b) shock absorber in vehicle c) cable of lift elevator (d) metal sheet cutter 8). The change in dimensions per unit original dimension is called as..... (c) modulus of electricity (d) shear stress (b) strain (a) stress 9). Shear strain is defined as (a) force per unit area (b) area per unit force (c) product of lateral displacement to distance from fixed layer (d) ratio of lateral displacement of layer to its distance from fixed layer 10). Within elastic limit, strain is directly proportional to stress is the (a) Boyle's law (b) Newton's law (c) Pascal's law (d) Hooke's law 11). The compressibility is defined as..... (a) reciprocal of bulk modulus of elasticity (b) reciprocal of Young's modulus of elasticity (d) none of these (c) reciprocal of modulus of rigidity 12). The relation between Young's modulus (Y), bulk modulus (K) and modulus of rigidity (ii) is given by $a)\frac{1}{Y}=\frac{1}{3\eta}+\frac{1}{9K}$ c). $\frac{1}{K} = \frac{1}{Y} + \frac{1}{n}$ d). $\frac{1}{Y} = \frac{1}{9n} + \frac{1}{3K}$ b) $\frac{1}{3Y} = \frac{1}{n} + \frac{1}{9K}$ 13). Poisson's ratio is defined as the (a) ratio of lateral strain to longitudinal strain ((b) ratio of longitudinal strain to lateral strain (d) product of lateral strain to longitudinal strain (c) ratio of tensile strain to lateral strain 14). The extension produced in a wire due to a load is 3 mm. The extension in a wire of same material and length but half the radius will be (a) 10 mm (b)12 mm (c)14 mm (d) 16 mm

15). A wire of length 2 m extends by 2 mm when a force is applied to it. Calculate stress produced in it if $Y = 2 \times 10^{11} \text{ N/m}^2$.

(a) $1 \ge 10^8 \text{ N/m}^2$	(b) $2 \times 10^8 \text{N/m}^2$	(c) 3 x 10^8 N/m^2	(d) $4 \times 10^8 \text{ N}$	m^2	
16).Calculate the compress (a) $0.2 \times 10^{-10} \text{ m}^2/\text{N}$	ssibility of metal, if b (b)0.5 x 10 ⁻¹⁰ n	modulus of elasti n^2/N c) 0.2 x 10 ⁻	city K= 2 x 10^{-10} N 10^{10} m ² /N (d) 0	M/m^2 . .5 x ^{10⁻¹⁰ m²/N}	
17). The tendency of a b	ody to remain in a	state of rest or unifo	rm motion until a	nd unless an exte	rnal force is
(a) inertia	as (b) m	omentum	(c) impulse	(d) read	ction
18). The negative acceleration(a) slow acceleration	ation is called as n (b) retardation	n (c) uniform acce	eleration (d)	gravitational accele	eration
19). Which of the followin (a) $\mathbf{T} = \mathbf{m} (\mathbf{g} + \mathbf{a})$	ng formulae is suitab (b) T	le to find tension in r m (g - a)	ope of the lift, if lift (c) $T = m (a - g)$	t is moving up) (d) T	= a(m-g)
20). Which of the following $(a) T = m (g + a)$	ng formulae is suita (b) T	ble to find tension in = $\mathbf{m} (\mathbf{g} - \mathbf{a})$	rope of the lift, if $(c) T = m (a - g)$	lift is moving down) (d) T	n = a(m-g)
 21). Which of the followi (a). half a speed, do (b) removing dust f (c) flying in air (d) while riding a state 	ng is not an applicat wn moving bottle u rom bed using dust kate board, you fly t	ion of Newton's firs sed to remove honey it off te ^{chnique} using ar forward off the board	t law of motion ketch up from bo y tool I when hitting a ro	ttle. ock	
22). Which of the followi(a) high jumping at(c) use of stretchable	ng is not an applicat thlete use cushion e seat belt in a car	tion of Newton's seco for landing	nd law of motion (b) playin (d) shock abso	g guitar orber in a vehicle	
23). A wire rope of lift ha (a) 12345 N	s mass 2500 kg. If li (b)26125 N	ft moves with an acce (c)29120N	leration of 0.65m/5 (d) 3250N	S ² , then tension in t	he rope will be
24). A wire rope of lift ha (a)12345 N (b 25). As per law of conset	s mass 2500 kg. If li b)13567 N cyation of momentum	ft moves with an acce (c)21250N	leration of 0.65m/3 (d) 26520N	S^2 , then tension in t	he rope will be -
(a) $m_1m_2 = v_1v_2$	(b) $m_1v_2=m_2v_1$	$(c)m_1v_1=1$	$\mathbf{m}_2 \mathbf{v}_2$ (d) m ₁ v ₁ +m ₂ v ₂ =0	
26). A two wheeler vehicl (a) 125 kg m/s	e of mass 150 kg has (b) 900 kg m/s	a velocity of 6 m/s. Th (c) 90 j	ne momentum of cg m/s (d) 250	kg m/s	
27). The momentum of tra (a) 10.5 x 10⁶ Ns	nin weighing 3000 kN (b) 25 x 10 ⁶ Ns	V moving with speed 9 (c)2.5 z	0 km/hr will be x 10 ⁶ Ns (d) 7	'.65 x 10 ⁶ Ns	
28). A bullet of mass 50 the gun will recoil is (a) 4 m/s	gm is fired with a v (b)6 m/s	velocity of 800 m/s f (c) 8 m/s	rom a gun of mas (d) 10 m/s	s 5kg. The velocit	y with which
29).Which of the followin (a) swimming (b)	ng is the application of beat belt in	of Newton's first law car (c) jumping	of motion ? (d) rocket fir	e	
30). Newton's 2nd law of and takes place in the direction of the direction	of motion states tha ection of	t the rate of change	of momentum of a	a body is proportio	onal to

(a) velocity, force (b) force, velocity (c) displacement, velocity (d) applied force, force

31).Angle subtended by called as	y radius vector wl	hen a particle	in circula	r motion mo	ves from or	ne position to o	ther is
(a) displacement	(b) angular dis	placement	(c) angu	lar velocity	(d)angular	Acceleration	
32).The unit of angular (a) s/radian	velocity is (b) ra	idian/s	(c)	radian-s	(d)	degree/radian	
33).The relation betwee	n angular velocity	v (0 and linea	r velocity (v) is given b	у		
(a) $a = r\alpha$	(b) r =	= aα	(c)	$\alpha = ar$	(d)	$a = r + \alpha$	
34).One revolution = \dots	rad.						
(a) $\pi/3$ (b) $\pi/2$	(c) π (d)2π					
35).1 r.p.s. is equivalent (a) 1/60 rpm	to (b) 60 rpm	(c) 1/3600 t	rpm	(d) 3600 rp	om		
36).A fly wheel is rotati	ng at 120 rpm. Its	angular velo	city will be				
(a) 2π rad/s	()	b) 4π rad/s		(c) $\pi/2$ ra	d/s	(d) $\pi/4 \text{ rad}/$	s
37).An electric fan rotat(a) 0.1π rad/s	ting at 600 rpm as (b) 0.3π rad/s	ccelerates to (c) $.06 \pi$ rad	1500 rpm : /s	in 5 minutes (d) 0.9π ra	. Calculate ad/s	its an ^{gular accelera}	tion.
38).Periodic time of angul (a) 2/3 Hz	ar motion is 3 sec. (b) 6 Hz	Its frequency (will be (c) 3 Hz	(d) 1.	/3 Hz		
39). Projectile is defined a(a) more than 90°	s an object thrown b) more than	in air making 0° and less tl	angle with h h an 90 °	norizontal. (c) less	than 0° (d) 180°	
40). Motion of a projectil(a) one dimensional	e is (b) two din	nensional	(c) three	dimensional	(d) for	ur dimensional	
41).A ball is projected m (a) straight (l	aking an angle of (o) circular (90 degree wit c) parabolic	h the horiz	ontal, the pat (d) elliptic	h of the ball cal	is	
42).Trajectory is defined (a) angle (b) height	as thetrac ght (ced by an obje c) path	ct in projec	ctile motion. (d) horizo	ontal line		
43). Angle of projection in (a) $\theta = \tan(\frac{4H}{R})$	n projectile motior (b) θ = tan	th is given by f $\frac{1}{R} \left(\frac{4H}{R}\right)$	ormula (c) θ =	tan(R 4H)	(d) θ = ta	ın⁻¹(R 4H)	
44) Maximum vertical di (a) $\mathbf{H} = \frac{\mathbf{v}^2 \mathbf{Sin}^2 \mathbf{\theta}}{2\mathbf{g}}$	stance covered by (b) H =	a projectile fr $\frac{v^2 \sin^2 \theta}{g}$	rom ground (c)	level is calle $H = \frac{V Sin\theta}{2g}$	ed height of f (d) H	projectile and is = $\frac{V Sin \theta}{g}$	given by
45).Total horizontal dist (a) $R = \frac{v^2 \sin \theta}{2g}$	ance covered by a (b) $R = \frac{v^2 Si}{2}$	projectile is o	called range (c) R =	$\frac{\text{of projectile}}{\frac{2V \text{Sin}^2 \theta}{2g}}$	e is given by (d) R =	$\frac{v^2 \sin 2\theta}{g}$	

46). A player kicks a ball at an angle θ with the horizontal. The maximum horizontal range corresponds to

An angle of					
(a) 30°	(b) 45 °	(c) 60°	(d)	75°	
47). The total time in w	which the projectile co	overs the entire tr	ajectory is calle	ed time of flight (T)	and is given
a) $T = \frac{2VSin\theta}{g}$	(b) T = $\frac{VSin2\theta}{g}$	(c) T =	$\frac{VSin\theta}{2g}$ ((d) T = $\frac{V \sin 2\theta}{2g}$	
48).A ball is thrown wit (a) T = 2.4 sec	th a velocity of 80 m/s (b) $T = 6.15$ sec	making an angle (c) T = 4.	of 30° with the h 5 sec (d) T =	orizontal, time of flig = 8.16 sec	ht will be
49). A ball is thrown wit reach maximum heig	h a velocity of 80 m/s ht will be	making an angle o	of 30° with the he	orizontal, time taken b	by a ball to
(a)20.4 sec	(b)50.2 sec	(c)40.81 sec	(d) 81.6 sec		
50). A bullet is fired w after a time interval (g =	ith velocity 100 m/s a 10 m/s2)	t an angle 30° w	ith the horizonta	al. The bullet will ret	urn to ground
(a)50s	(b)10 sec	(c)200 s	(d)100 sec		
51). The maximum height (a) h	to which a person can (b) 2h	throw is 'h'. The m	aximum distance (c) 3h	e to which he can throw (d) 4h	w will be
52). The maximum distance (a) $h = 2R$	the to which a person car (b) $h = 3$	n throw is 'R'. The R	maximum height (c) h = R/2	to which he can throw (d) $h = R/$	y will be 4
53).In projectile which of (a) momentum (b)	the following parameter) horizontal componen	r remains constant. t of velocity (c)	vertical compone	ent of velocity (d) kinet	tic energy
54).The capacity of doing	work is called as				
(a) powe	r (b) en	ergy (c) force	(d) disp	olacement	
55).Power is defined as					
(a) time per work	done	(b) rate of work d	lone w.r.t. time		
(c) amount of wo 56)Work-energy princip equal to	rk done le states that work done	(d) work done per by a system of fo	t unit mass prees acting on a l	body between any two	points is
(a) change in P.	E. (b) additions of	of K.E. (e	c) change in K.E	. (d) additions of	f P.E.
57). Efficiency of a pump is (a) efficiency = $\frac{in}{2}$	s given by put power tput power	(b) e	$\mathbf{fficiency} = \frac{\mathbf{output}}{\mathbf{input}}$	power	
(c) efficiency = ou	tput power × input pov	wer (d) ef	ficiency = output	t power + input powe	r
58). Force of 10 N applie (a) 1 I	d on a body produces di (b) 1	splacement of 10 i	n, the work done	will be	
(*) 10	(~) -		(0)		
59). A lift of weight 500 l (a) 1 kN	N is being raised with us (b) 10 kN	niform velocity of (c) 100 kN	2 m/s. Power inv	olved in it will be (d) 200 kN	
60). Work of 1.5 $\times 10^6$ J i will be	s done in half hour. If	the efficiency of th	ne pump is 70%,	the power of the pum	p required
(a) 1190 watt	(b) 510 watt	(c) 1510	watt ((d) 2090 watt	

61). A roc	ket motor exerts a thru	st of 2 MN at a speed	d of 250 m/s. Powe	r developed in	this case will be
	(a) 100 MW	(b) 500 MW	(c) 1000 MW	(d) 1500 MW	V
62). A veh	icle of mass 100 kg is	moving with a speed	of 36 km/hr. Its kin	etic energy will	l be
	(a) 2000 J	(b) 5000 J	(c)	7000 J	(d) 8006J
63). A forc	e of 24 N is used to li	ft an object over a h	eight of 3 m. Pote	ntial energy ga	ained by the object will be
	(a) 8 J	(b) 12 J	(c)	72 J	(d) 92 J
64). Porter done l	lifts a suitcase weighin by the porter on the suit	ng 25 kg from the pla case will be	atform and puts on	his head 2 m a	bove the platform. Work
	(a) 110 J	(b) 220J	(c)	390 J	(d) 490J
65).Longitu	dinal sound wave travel	in the form of alternate	2		CO2
a)	Crest and trough		b) compression a	and rarefactions	S
c)	crest and compression		d) trough and rare	faction	
66).The ma	ximum displacement of	particle (in S.H.M.) fro	m its mean position	is called as	
a) I	Frequency		b) pe	eriod	
c) v	vavelength		d) an	nplitude	
67). The re	lation between velocity,	frequency and wavele	ngth is		
a) n=	=νλ		b) v=	nλ	
c)v=	$= n/\lambda$		d) v=>	√n	
68).Ultrasor	nic are the sound waves	having frequency			
a) r	nore than 20 kHz		b) mo	ore than 20 Hz	
c)]	less than 20 Hz		d) les	s than 20 kHz	
69) The sou	nd wave of frequency le	ss than 20 Hz are knov	vn as		
a)infr	rasonic		b) au	dible sound	
c)ultra	asonic		d)sup	ersonic	
70) The sou	nd wave of frequency be	etween 20 Hz to 20 kH	z is known as		
a)infra	asonic		b) au	dible sound	
c)ultra	asonic		d)sup	ersonic	

Question Bank of ASC(Chemistry)-312308 Unit Test -1

SEM II for ME/CE/EE2K

1. The product from a b	last furnace in metallurg	gy of iron is know	ın as	
(a) cast iron (b) wro	ught iron (c) pig i	i ron (d) stee	I	
2. The process of separa	ating metal from its ore i	is called as		
(a) magnetic separation	(b) froth floatation	(c) metallurgy	(d) polymerization	l
3. Naturally occurring m	netallic compounds are o	alled		
(a) metalloids	(b) minerals	(c) hard solids	(d) matrix	
4. The process of conve	rting an ore into its oxid	e is called as		
(a) smelting	(b) roasting	(c) refining	(d) bessen	nerisation
5. In magnetic separation	on, magnets are used to	separate		
(a) ore and gangue	(b) metal and mineral	(c) metal and ga	angue (d) iron and steel
6. The material having r	netallic characteristics a	nd made up of ty	vo or more elemer	nts one of which is a metal
(a) element	(b) properties	(c) fusion	(d) alloy	
7. The contents of an al	loy in terms of what eler	ments are preser	nt and in what amo	unt is
(a) fusion (b) prop	perties (c) com	position (d) appl	ication	
8 The science and techr	ology of extracting met	als from their ore	es, refining them a	nd preparing them for use is known as-
(a) alloying (b) met	allurgy (c) hardening	(d) all o	f these	
9. The property which e	nables metals to be drav	wn into wire is ki	nown as	
(a) malleability (b) duc	tility (c) tens	sile strength	(d) plastic	deformation
10. A solder consists of-				
(a) lead and tin (b) tin a	and white metal (c) zinc	and tin (d) tin a	nd antimony	
11. The flux used in a bl	ast furnace while meltin	g iron ore is		
(a) carbon (b) oxyg	gen (c) lime stone	(d) coke		
12. Brass is an alloy of				
(a) copper and tin	(b) copper and zinc	(c) copper and I	ead (d) coppei	r and nickel
13. Bronze is an alloy of				
(a) copper, lead and tin	(b) copper and tin	(c) copper and z	zinc (d) zinc, n	ickel and tin
14. The naturally occurr	ing minerals from which	n metals can be e	xtracted profitably	are called
(a) alloys (b) flux	(c) ore	(d) matrix		
15. The rocky impurities	s associated with the ore	e are called as		
(a) alloy(b) flux	(c) slag (d) matrix			
16. What are the major	steps involved in the ex	traction of a met	al after its ore is m	ined?
(a) concentration of the	ore (c) refir	ning of impure m	etal	
(b) reduction of metallio	c oxide (d) all of these			
17. The removal of imp	urities associated with the	ne ore is called as	5	
(a) reduction of the ore	(b) floatation o	f the ore		
(c) concentration of the	e ore (d) roasting of t	he ore		
18. The method used to	separate magnetic ore	from non-magne	etic gangue is	
(a) chemical method	(c) calcination	(b) magnetic se	paration (d) roasting
19. The method used fo	or separating ore and gar	ngue by preferen	tial wetting with o	il and water is
(a) froth floatation	(b) gravity separation	(c) cher	nical method	(d) magnetic separation
20. Froth floatation met	thod is applied for			
(a) oxide ores	(b) sulphide ores	(c) aluminium o	res (d) zinc ores

21. The compound of metal found	l with earthy imp	ourities is called a	as	
(a) ores (b) minerals (c	c) gangue (d	l) slag		
22. Oxidation is combination of an	n element and			
(a) hydrogen (b) ozone	(c) helium	(d) oxyger	ı	
23. Froth floatation method uses-				
(a) pine oil (b) alcohol (c	c) acid (d) alkali			
24. The hardness is the property o	of a material due	to which it		
(a) can be rolled or hammered inte	o thin sheets	(b) can be	drawn into wires	
(c) breaks with little permanent di	istortion	(d) can cut another metal	
25. Pig iron is extracted from				
(a) haematite (b) magne	etite c)	sinderite	(d) feldspar	
26. The coke in the charge of a bla	ast furnace			
(a) supplies heat to reduce ore an	nd melt the iron	(b) acts as	an iron bearing mineral	
(c) controls the grade of pig iron	(d	l) forms a slag by	combining with impurities	
27. Blister copper is			C .	
(a) pure copper (b) impure coppe	r (c) alloy o	f copper (d) ore of copper	
28. The materials mixed before or	e is subjected fo	r smelting in the	extraction of iron are	
(a) coke and silica (b	o) coke and lime	stone		
(c) lime stone and silica (d) coke, l	, lime stone and si	lica		
29. Slag is a product formed when)			
(a) gangue reacts with flux	(b) flux re	acts with ore		
(c) gangue reacts with ore	(d) flux re	acts with minera	I	
30. The ability of a metal to cut by	cutting tools is			
(a) machinability (b) weldal	bility (c) tensile	strength	(d) toughness	
31. The ability of a metal to resist	deformation in r	response to an ar	oplied force is	
(a) castability (b) refract	toriness (c) stiffness	(d) machinability	
32. Weakening of metal due to re	peatedly applied	load is	(2)	
(a) stiffness (b) specific heat (c	c) density (d) fatigue		
33. Ferrous allovs contain	(-	,		
(a) copper as major element (b	o) iron as maior (element		
(c) iron as alloving element	(d) none c	of these		
34. Wood's metal and solders are	prepared by			
(a) fusion method (b) comp	ression method	(c) smeltin	ng (d) oxidation	
35. Plain carbon steel is classified	on the basis of	-	.6 (
(a) percentage of iron present (b) percentage of	carbon present		
(c) both (a) and (b)	(d) none c	of these		
36. Bronze is a				
(a) ferrous allov (b) tin allov	c) copper alloy (d	l) zinc allov		
37allov is used for making part	ts of aeroplanes.	.,		
(a) Brass (b) Bronze (c	c) Duralumin (d	l) Wood's metol		
38 Wood's metal is a	(0			
(a) tough alloy (b) hard alloy	(c) fusible	allov (d) all of th	nese	
39 Tinmann's solder is an alloy of	(c) Tusibic			
(a) $Ph + 7n$ (b) $Ph + Ni$ (c)	-) Ph + Cu (d) Ph + Sn		
40. Steel is used in railway engine	ering hecause of			
(a) low carbon steel	a) medium carbo	on steel (c)) high carbon steel	(d) all of these
41. Which is closest to the nurest	form of the iron?	2 (C)		
11. Which is closest to the purest		•		

(a) caste iron (b) p	ig iron (c)) wrought iron (d) steel
----------------------	-------------	------------------	----------

42. The process in which some minerals are converted to oxide by heating in air at the temperature below the melting point is called---

(a) roasting (b) bessemerization (c) smelting (d) concentration 43. Metallic compounds that occur naturally are called---(a) metal oxides (b) ores (c) minerals (d) none of these 44. In the alumino-thermite process, Al acts as (a) an oxidizing agent (b) a flux (c) solder (d) a reducing agent 45. An alloy which does not contain copper is---(b) **duralumin** (c) brass (a) bronze (d) bell metal 46. In the electrolytic refining of copper, Ag and Au are found---(a) on anode (b) in electrolyte solution (c) in anode mud (d) in cathode mud 47. The most abundant element on the earth's crust is---(a) hydrogen (b) oxygen (c) silicon (d) carbon 48. Silicon is main constituent of---(a) alloys (b) rocks (c) animal (d) vegetables 49. A mineral is called an ore if---(a) metal present in mineral is precious (b) metal can be extracted from it (c) metal can be extracted profitably from it (d) metal cannot be extracted from it 50. Composition of Azurite mineral is---(a) CuCO₃.CuO (b) Cu(HCO₃) .Cu(OH)₂ (c) 2CuCO₃.Cu(OH)₂ (d) CuCO_{3.}2Cu(OH)₂ 51. Thermite welding is used for making---(a) window grill (b) rail tracks (c) polymers (d) rubber 52. Galena is an ore of---(a) zinc (b) aluminium (c) lead (c) Pig iron 53. Which of the following is not an ore? (a) Bauxite (b) Haematite (c) Pig iron (d) Zinc blende 54. Brass and bronze alloys are respectively made up of (a) carbon, zinc and copper, tin (b) copper, tin and copper, zinc (c) copper, zinc and copper, tin (d) copper, zinc and copper, aluminium 55. A naturally occurring substance found in earth's crust which contains metal in free state or combined state is---(b) mineral (d) flux (a) ore (c) gangue 56. Impurities in an ore are called---(d) flux (a) ores (b) minerals (c) matrix 57. The substances used to remove unwanted impurities associated with ore (gangue) are known as---(c) flux (d) slag (a) minerals (b) gangue 58. The fusible (easily melting) chemical compound formed by the reaction of gangue and added flux is known as---(a) mineral (b) gangue (c) flux (d) slag 59. The process of removal of gangue /matrix/ impurities from ore is---(a) oxidation (b) reduction (c) concentration (d) smelting 60. Which of the following process of extraction gives pure metal? (a) refining (b) reduction (c) concentration (d) crushing (pulverisation) 61. The process used for concentration of sulphide ore is---(b) magnetic separation (c) froth floatation (a) gravity separation (d) calcination 62. The copper pyrite ore is concentrated by--a) gravity separation (b) magnetic separation (c) calcination (d) froth floatation

63. The copper pyrite ore is concentrated by a chemical process---

(a) **roasting** (b) smelting (c) magnetic separation (d) calcination

64. For concentration, ore is heated in the absence of air in---

(a) roasting (b) smelting (c) **calcination** (d) copper

65. For concentration ore is heated in the presence of air in --- process.

(a) roasting (b) smelting (c) calcination (d) concentration

66. In the process of calcination---

(a) sulphide ore is converted into sulphate and oxide

(b) oxide ore is converted into hydroxide ore or carbonate ore

(c) carbonate and hydroxide ore is converted into oxide

(d) only hydroxide ore is converted into oxide

67. In the process of roasting---

(a) sulphide ore is converted into only oxide

(b) sulphide ore is converted into sulphate and oxide

(c) carbonate and hydroxide ore is converted into oxide

(d) oxide ore is converted into hydroxide ore or carbonate ore

68. The sequence of steps involved in metallurgy/extraction process is---

(a) Crushing—>Reduction--->Concentration---> Refining

(b) Crushing---> Concentration---> Reduction---> Refining

(c) Crushing---> Concentration---> Refining---> Reduction

(d) Crushing---> Refining---> Concentration---> Reduction

69. The chemical formula of haematite ore is---

(a) Fe_3O_4 (b) Fe_2O_3 (c) FeO (d) $FeCO_3$.

70. In melting the ingredients roasted ore, coke and limestone are added to blast furnace for the extraction of metal in the ratio---

(a) **8:4:1** (b)8:1:4(c) 4:1:8 (d) 4:1:8

71. In the process of electrolytic refining, pure copper is made us---

(a) **cathode** (b) anode (C) electrolyte (d) anode mud

72. In the process of electrorefining of blister copper, the electrolyte used is---

(a) $CuSO_4$ (b) H_2SO_4 (C) $CuSO_4$ and traces of H_2SO_4 (d) $CuFeS_2$

73. The base metal of brass alloy is---

(a) carbon (b) **copper** (c) zinc (d) tin

74. Constituents of Duralumin alloy is---

(a) **Al, Cu, Mg, Mn** (b) Bi, Sn, Pb, Cd (c) Al, Cu, Zn, Cd (d) Al Cu, Pb, Sn

75. Constituents of Woods metal is---

(a) Al, Cu, Mg, Mn (b) **Bi, Sn, Pb, Cd** (c) Al, Cu, Zn, Cd (d) Al Cu, Pb, Sn

76. Which of the following alloy is used in electric fuses?

(a) Duralumin (b) Brass (c) Bronze (d) **Wood's metal**

77. Which of the following alloy is used in medals and statues?

(a) Duralumin (b) Brass (c) **Bronze** (d) Wood's metal

78. The composition of Tinmann's solder is---

(a) 66% Pb and 34% Sn (b) 66% 5n and 34% Pb

(c) 75% Bi and 25% Sn (d) none of these

79. The percentage of carbon in low carbon steel (Mild Steel/MS) is---

(a) **0.05 to 0.3** (b) 0.3 to 0.6 (c) 0.6 to 1.5 (d) less than 0.05

80. The percentage of carbon in medium carbon steel is---

(a) 0.05 to 0.3 (b) **0.3 to 0.6** (c) 0.6 to 1.5 (d) less than 0.05 81. The percentage of carbon in high carbon steel is---(a) 0.05 to 0.3 (b) 0.3 to 0.6 (c) **0.6 to 1.5** (d) less than 0.05 82. Which of the steel is not weldable? (a) low carbon steel (b) medium carbon steel (d) none of these (c) high carbon steel 83. The chemical formula of gypsum is---(a) CaSO₄ (b) CaSO₄.2H₂O (c) Cu₂O (d) Cu(OH)₂ 84. The base metal of Tinmann's solder alloy is---(a) carbon (b) lead (c) zinc (d) tin 85. The melting point of Tinmann's solder alloy is---⁰C. (a) 180 (b) 71 (c) 1089 (d) 232 86. The melting point of Wood's metal alloy is---⁰C. (a) 180 (b) **71** (c) 1089 (d) 232 87. Which of the following alloy contains 12.5% Sn? (a) Duralumin (b) Brass (c) Tinmann's solider (d) Wood's metal 88. Which of the following alloy contains 66% Sn? (d) Wood's metal (a) Duralumin (b) Brass (c) Tinmann's solider 89. Duralumin alloy has --- base metal (b) zinc (c) calcium (a) copper (d) aluminium 90. Which of the following constituent makes steel hard? (a) sulphur (b) carbon (c) phosphorus (d) manganese 91. The property of a metal by which they can be beaten into sheet is called---(a) **malleability** (b) ductility (c) expansion (d) stiffness 92. Which metal is found in liquid state at room temperature? (d) Al (a) Fe (b) Zn (c) **Hg** 93. Which of the following statements is correct? (a) all metals are ductile (b) all non-metals are ductile (c) generally, all metals ore non-ductile (d) some metals are ductile 94. ---is the process of uniting two pieces of metals by means of heat---(a) casting (b) forging (c) welding (d) brazing 95. The process of joining two thin wires by introducing a molten non-ferrous alloy between them below 400°C is known as---(b) soldering (d) both (a) and (b) (a) brazing (c) welding 96. If a metal is --- it can be drawn into wire. (a) conductive (b) malleable (d) ductile (c) magnetic 97. The process of converting carbonate ore into its oxide is called as---(a) smelting (b) roasting (c) refining (d) bessemerisation 98. The process of separating metal from its ore is called as---(a) magnetic separation (b) froth floatation (c) **metallurgy** (d) polymerisation 99. In magnetic separation, magnets are used to separate---(a) magnetic ore and non-magnetic gangue (b) non-magnetic are and non-magnetic gangue (c) metal and gangue (d) iron and steel 100. The science and technology of extracting metals from their ores, refining them and preparing them for use is known as---(b) **metallurgy** (c) hardening (d) all of these (a) alloying 101. Blister copper is---(a) pure copper (b) impure copper (c) alloy of copper (d) ore of copper 102. Haematite ore is concentrated by---

(a) magnetic separation(b) froth floatation (c) amalgamation (d) all of these 103. Select the proper reaction from the following---(a) slag+ gangue = flux (b) flux + gangue = slag (d) gangue + matrix = slag (c) flux + slag = gangue 104. The process of removing magnetic impurities from ore is called---(a) magnetism (b) magnetic separation (c) froth floatation (d) smelting 105. An alloy used for soldering the articles of tin is---(a) plumber solder (b) Tinmann's solder (c) Wood's metal (d) duralumin 106. Which of the following is not an alloy? (a) steel(b) copper (c) brass (d) bronze 107. An alloy can be---(a) homogeneous (b) heterogeneous (c) colloidal (d) all of these