Question Bank (I scheme)

Name of Course: Industrial Stoichiometry Subject code: 22315

Semester: Third Programme: Chemical

Unit test II

Unit 4 - Material balance with Chemical reaction (18 marks)

2 marks question

1. Define stoichiometric equation and stoichiometric ratio.

- 2. Define limiting component and excess component.
- 3. Give the expression for % conversion and % yield...
- 4. Ammonia is producd by $N_2 + 3H_2 --- \rightarrow 2NH_3$. Calculate molal flow rate of H_2 corresponding to the nitrogen feed rate of 25 kmoles/hr.
- 5. For the reaction $C_2H_4 + 2Cl_2 --- \rightarrow C_2HCl_3 + H_2 + HCl$. Calculate the amount of HCl produced from 50 Kg C_2H_4 .

4marks question

- 6. A combustion reactor is fed with 50 kgmoles of butane and 2100 kgmoles air per hour. Calculate % excess air
- 7. Oxidation of ethylene to produce ethylene oxide is given by $C_2H_4 + \frac{1}{2}O_2 - \rightarrow C_2H_4O$. If air is used 20 % in excess of that theoretically required, calculate the quantity of air supplied based on 100 kgmoles of C_2H_4 fed to reactor.
- 8. The feed containing n60 mol% A, 30 mol% B and 10 mol% inerts enters a reactor. The product stream leaving the reactor is found to contain 2 mol% A. The reaction taking place is 2A + B ---→ C. Estimate the percentage of original A getting converted to C
- 9. Formaldehyde is produced from methanol in catalytic reactor. The production rate of formaldehyde is 1000 kg/hr. If conversion of methanol is 65%, calculate the required feed rate of methanol.

<u>Unit 5 - Fuel and combustion (08 marks)</u>

2 marks question

- 1. Define gross and net calorific value.
- 2. Give classification of fuel with two examples each.
- 3. Write the expression for average molecular weight and density of gas mixtures.
- 4. Define calorific value.
- 4 marks question

- 5. Crude oil is found to contain 87% Carbon, 12.5% hydrogen and 0.5% sulphur by weight. Calculate the net calorific value of the crude oil at 25°C. GCV of crude oil at 25°C is 10750 kcal/kg oil. Latent heat of water = 538.2 kcal/kg.
- 6. The gross calorific value of gaseous propane at 298 K is 2219.71 kJ/mol. Calculate net calorific value of propane.
- 7. Coke is found to contain 90% carbon and 10% non combustible ash by weight. How many moles of oxygen are theoretically required to burn 100 kg of coke completely?

Unit 6 - Energy balance (10 marks)

2 marks question

- 1. Define
 - I) Standard heat of formation
 - Ii) Standard heat of combustion
 - iii) Standard heat of reaction
- 2. Define i) calorie ii) kilocalorie
- 3. Define i)specific heat ii) latent heat
- 4. Define i) adiabatic reaction ii) adiabatic reaction temperature
- 5. The standard heat of combustion of phenol is -714.71 kcal/gmol. Calculate the heat evolved by combustion of 470 gms of phenol
- 6. Calculate the heat that must be added to 3 kgmoles of air to heat it from 25° C to 200° C using mean molal heat capacity data
 - Cp_m (between 200 and $25^{\circ}C$) = 7.021 Kcal/kmol K
- 7. Calculate the heat required to increase the temperature of 40 Kg/hr of kerosene to heat it from 30° C to 80° C. Cp for kerosene is 0.83 Kcal/kg $^{\circ}$ C

4marks question

- 8. Calculate the heat of formation of liquid 1-3 butadiene using the following data Standard heat of formation of CO_2 = -393.51 KJ/mol Standard heat of formation of H_2O = -285.83 KJ/mol Standard heat of combustion of C_4H_6 = -2520.11 KJ/mol
- 9. Calculate the enthalpy change between reactants and products if both are at 25° C and if 60 gmoles of CO₂ are produced by the reaction

2
$$C_4H_{10} + 13 O_2 \longrightarrow 8 CO_2 + 10 H_2O$$

Compound Standard heat of formation
 C_4H_{10} - 30.14 Kcal/gmol
 CO_2 - 94.051 "
 H_2O - 68.315 "

10. Calculate standard heat of reaction of

 $C_2H_5OH - \rightarrow CH_3CHO + H_2$

Compound Standard heat of combustion

 C_2H_5 OH - 336.82 Kcal/gmol

 CH_3CHO - 284.98 " H_2 - 68.317 "

11. Estimate in Kcal/hr the heat that must be transferred to water at 50° C to generate steam at 100° C? Latent heat of vaporization (λ) =540 Kcal/kg