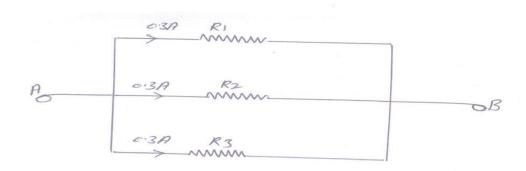
## **Question Bank (G scheme)**

Name of subject: Electrical Technology

Subject code : 17331 Unit Test: I

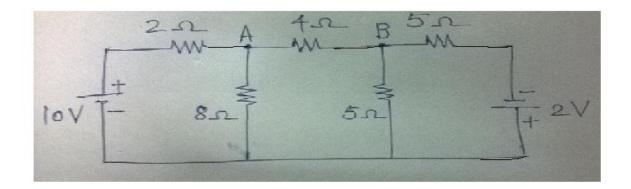
Semester : III Course : CM/IF3G


## **CHAPTER 1 DC CIRCUITS (12 marks)**

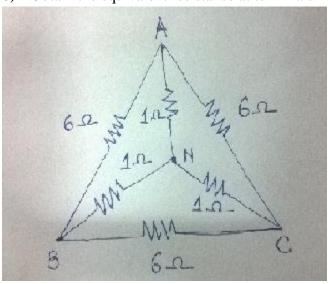
#### 3 marks

1) State Ohm's Law with its expression.

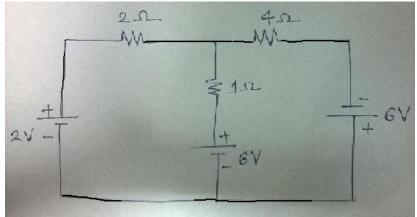
2) Define: Resistance, EMF and Potential Difference.


3) Find the value of resistors in figure, if the equivalent resistance of the three resistors joined in the parallel is 12 ohm.




- 4) Give mathematical expressions used to convert
  - (a) Star network into delta network
  - (b) Delta network into Star network

## 4marks


- 5) State KCL & KVL. Explain each with diagram.
- 6) With the help of a neat circuit diagram, explain how nodal analysis method is used to find node voltage and branch current.
- 7) Calculate the voltage at node A and B using nodal analysis.



8) Obtain the equivalent resistance at terminals B & C.



9) Find loop current and current flowing through  $1\Omega$  using mesh analysis.



## **CHAPTER 2 AC FUNDAMENTALS (26 marks)**

#### 3 marks

- 10) State Faraday's Law of electromagnetic induction.
- 11) State Lenz's law.
- 12) Distinguish between statically induced emf and dynamically induced emf.
- 13) Define and write their unit.
  - a. Inductive reactance
  - b. Capacitive reactance
  - c. Impedance

## 4 marks

- 14) Define and write their unit.
  - a. Magnetic Flux
  - b. Reluctance
  - c. Inductance
  - d. Capacitance
- 15) Calculate the rms value, average value, peak factor and form factor of a sinusoidal voltage given by E= 170 sin 628t.
- 16) Define
  - a. Instantaneous value
  - b. Maximum value
  - c. RMS value
  - d. Average value
- 17) An alternating current is given by the equation  $i = 10 \sin 314t$ . Find
  - a. Maximum value
  - b. Value of current after t = 0.01 sec
  - c. Frequency
  - d. Time Period
- 18) Draw waveform & phasor diagram, write voltage and current equation and phase relation between them for purely capacitive circuit.
- 19) Show that power consumed in purely inductive circuit is zero when ac is applied.
- 20) Draw waveform and phasor diagram, write voltage and current equation and phase relation between them for ac circuit containing resistance only.
- 21) Draw the waveforms from the following equations:
  - a.  $v_1 = V_m \sin \omega t$  and  $v_2 = V_m \sin (\omega t \pi/2)$
  - b.  $v = V_m \sin \omega t$  and  $i = I_m \sin (\omega t + \pi/2)$

# **CHAPTER 3 AC SERIES CIRCUITS** (10 marks for 1st half part)

#### 3Marks

22) Define power factor and write its significance.

## 4 marks

- 23) A resistance of  $10\Omega$  & a capacitance of  $100\mu f$  are connected in series across a 230v, 50Hz ac supply. Calculate
  - a. capacitive reactance
  - b. impedance
  - c. current
  - d. power factor.
- 24) Draw phasor diagram and impedance triangle, write voltage and current equation of R-L series circuit.
- 25) A coil of resistance  $10~\Omega$  and inductance 0.1H is connected in series with 200V, 50Hz supply. Calculate:
  - a. Inductive reactance
  - b. Impedance
  - c. Current
  - d. phase angle between voltage and current.

.....