Bharati vidyapeeth Institute of Technology Question Bank (I-Scheme)

Name of the subject - Hydraulics (22401)

Unit test -2

Course - CE 4I

Chapter 4 (Flow through pipes)

(2 Marks)

a) State the principle of venturimeter.
b) What are major and minor loss of head in flow through pipes
c) Find the discharge flowing through a pipe of 10 cm dia and velocity is $1 \mathrm{~m} / \mathrm{sec}$
d) State the Darcys Weisbach equation for frictional loss in pipe
e) State any two causes of water hammer.
f) State two uses of Syphon
g) Enlist any two factors on which friction coefficient ' F ' depends.

(4 Marks)

a) State the causes and remedial measures of water hammer in pipes.
b) Water is flowing through a rectangular channel of width 5 m and bed slope 1 in 1200 . Depth of flow is 1.75 m . Find the discharge through the channel. Take $\mathrm{c}=50$.
c) What is most economical channel section? Write conditions for rectangular channel section to be economical.
d) Water discharge at the rate of $0.09 \mathrm{m3} / \mathrm{sec}$ through 10 cm diameter vertical sharp edged orifice placed under a constant head of 8 m . A point on the jet measured from vena contracta of the jet has co-ordinates 4.5 m horizontal and 0.54 m vertical. Find the coefficients Cc, Cd and Cv of the orifice.
e) What are major and minor loss of head in flow through pipes? Write any two equations of minor loss.
f) Find the discharge through the pipeline 20 cm in diameter and 1500 m long. The drop in water level is 10 m . Assume $\mathrm{F}=0.02$. Also draw TEL .
g) A 15 cm diameter pipe suddenly enlarge to 20 cm diameter. Calculate discharge through pipe if loss of head due to sudden enlargement is 30 cm of water
h) Explain with sketch working of syphon pipe
i) (i) Explain Dupuit's equiation for equivalent pipes.
(ii) Define Moody's diagram with its use
j) State the classification of losses in pipe with suitable sketches and equations for each.

UNIT -5 (Flow through Open Channel)

(2 marks)

a) State any two uses of pitot tube.
b) Define Hydraulic mean depth and its Units.
c) Enlist any four velocity measuring devices for channels
d) Define i) Wetted perimeter ii) Hydraulic Radius
e) Define hydraulic jump and state its two applications

(4 Marks)

a) State with sketch different shapes of Artificial channels. Give the formula for wetted area, wetted perimeter for any two
b) Determine the most economical section of a trapezoidal channel for carrying discharge 15 $\mathrm{m} 3 / \mathrm{sec}$ with bed slop of 1:4500. The side slopes are $4 \mathrm{H}: 3 \mathrm{~V}$. Take Manning's constant 0.015 .
c) A trapezoidal channel of most economical section has side slopes 1.5 (horizontal): 1 (vertical). It is required to discharge 15 m 3 of water per second with a bed slope of 0.5 metre in 3 km . Design the section using Manning's formula. Take coefficient of rogosity as 0.015
d) A triangular notch of angle 120 o is used to measure the discharge. Determine the head over the notch, if discharge is 1500 lits/minute. Assume $\mathrm{Cd}=0.6$.
e) Draw a neat sketch of cup type current meter and explain its working
f) Differentiate any four points between notch and weir

Unit -6 (Hydraulic pump)

a) Define suction head and delivery head with diagram.
b) Define - Static head and Manometric head

(4 Marks)

a) Differentiate Reciprocating pump with centrifugal pump.
b) Calculate the power of the pump from following data. (i) Total Static lift $=25 \mathrm{~m}$ (ii) Diameter of suction pipe $=12 \mathrm{~cm}$ (iii) Diameter of delivery pipe $=10 \mathrm{~cm}$ (iv) Length of suction pipe $=5 \mathrm{~m}(\mathrm{v})$ Length of delivery pipe $=50 \mathrm{~m}$ (vi) $\mathrm{F}=0.03$ for both pipes (vii) $\mathrm{Q}=$ 30 lit/sec. (viii) Efficiency $=85 \%$
c) Differentiate between turbines and pumps on any two factors.
d) A centrifugal pump is required to pump $15 \mathrm{lit} / \mathrm{sec}$ against head of 32 m . Find the power required by the pump taking overall efficiency 75%.
e) Explain with sketch working of centrifugal pump.

