: Digital Electronics/ Electronics & Tele-communication Engg./ Electronics &

Communication Engg./ Electronics Engineering/

Programme Name/s Instrumentation & Control/ Industrial Electronics/ Instrumentation/ Medical

Electronics/

Electronics & Computer Engg.

Programme Code : DE/ EJ/ ET/ EX/ IC/ IE/ IS/ MU/ TE

Semester : Second

Course Title : PROGRAMMING IN 'C' LANGUAGE

Course Code : 312009

I. RATIONALE

C language is basic programming language for enhancing logical and problem solving ability of student. This course enhances and builds confidence in programming skills of diploma students. This course will enable students to inculcate programming concepts and methodology to solve engineering problems.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to attain the following industry employer expected outcome through various teaching learning experiences - Develop 'C' programs to solve wide-reaching electronic engineering related problems.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Develop C program using input/output and arithmetic expressions.
- CO2 Develop C program using decision making statements and loops.
- CO3 Use predefined and user defined functions to develop C program.
- CO4 Develop C programs using arrays and strings.
- CO5 Implement the basics of structures and pointers to enhance the performance of the program.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

					L	ear	ning	Scho	eme					A	ssess	ment	Scho	eme				
	Course Code	Course Title	Abbr	Course Category/s	Co	ctu onta s./W	ict Zeek	4	NLH	Credits	Paper Duration		The	ory			T	n LL L tical	&	Base S	L	Total Marks
			L		CL	TL	LL				Duration	FA- TH	SA- TH	To	tal	FA-	PR	SA-	PR	SL		Iviai Ks
	- /		10.7	1								Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
3	312009	PROGRAMMING IN 'C' LANGUAGE	CPR	SEC	2	-	2	2	6	3	-	-	-		1	25	10	25@	10	25	10	75

Total IKS Hrs for Sem.: 0 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note:

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Write the basic structure of C program. TLO 1.2 Differentiate between keywords and identifiers. TLO 1.3 Use relevant data types as per the given situation. TLO 1.4 Construct algorithm and draw flowchart for the given problem. TLO 1.5 Use different types of operators in given situations.	Unit - I Basics of C Programming 1.1 Algorithms and Flow Charts: 1.1.1 Steps for writing algorithm 1.1.2 Notations of flow charts. 1.2 Structure of C program, Introduction of Assembler, Linker, Compiler, Interpreter. 1.3 Character set, Keywords, identifiers, constants, Variables 1.4 Data Types: 1.4.1 Predefined Data types: integer-unsigned, signed, long, float, double, character, single, octal, hexadecimal 1.4.2 User defined Data Types: Arrays, Structures. 1.5 Operators and expressions: 1.5.1 Formatted input and output statements 1.5.2 Types of Operators: Arithmetic, logical, relational, increment and decrement, bitwise, special operators: unary, ternary operators, 1.5.3 Precedence, Associativity of Operators	Chalk-Board Hands-on

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
2	TLO 2.1 Implement branching and looping. TLO 2.2 Demonstrate control statements using "ifelse". TLO 2.3 Apply different types of loops as per the given problem.	Unit - II Decision Control & Looping 2.1 Introduction to decision control, branching and looping 2.2 Decision Control statements: if, if-else, if-else-if ladder, switch case, 2.3 Looping and branching Statements: 2.3.1 while Loop, 2.3.2 for Loop, nested for loop 2.3.3 do-while loop, break, continue 2.3.4 Goto statement	Chalk-Board Demonstration Hands-on
3	TLO 3.1 Use functions for implementing C program. TLO 3.2 Write 'C' program to pass values between the functions. TLO 3.3 Use library functions for the given problem. TLO 3.4 Develop a recursive function for the given problem.	Unit - III Functions 3.1 Concept and Need of a Function. 3.1.1 Declaration ,definition and calling of functions 3.2 Passing Values between Functions: call by value ,call by reference, Scope Rule of Functions. 3.3 Using Library Functions: 3.3.1 math functions like: mod(),sqrt(),pow(),exp(),sum(), round(), 3.3.2 Character Functions like islower(),isupper(),isdigit(),tolower() 3.4 Recursive function.	Chalk-Board Demonstration Hands-on
4	TLO 4.1 List down the steps to declare, initialize and display array elements. TLO 4.2 Write a C program to handle Two dimensional arrays. TLO 4.3 Write steps to declare, initialize and display the strings in C program. TLO 4.4 Apply relevant string library functions as per the given problem.	Unit - IV Arrays And Strings 4.1 Concept and need of Arrays, 4.1.1 Declaration, Initialization, Storing Array Elements in Memory, Displaying array elements 4.2 Two-Dimensional Arrays 4.2.1 Initializing a Two-Dimensional Array 4.2.2 Adding elements to 2-D Array 4.2.3 Display elements of 2-D Array 4.3 Introduction of Strings 4.3.1 Declaration, Initialization and Display of string 4.4 Standard Library String Functions 4.4.1 strlen(),strcpy(), strcat(), strcmp()	Chalk-Board Demonstration Hands-on
5	TLO 5.1 Develop a program to declare, access and display structures in C. TLO 5.2 Use pointers to access memory and perform pointer arithmetic.	Unit - V Structures & Pointers. 5.1 Introduction to structures: 5.1.1 Declaring a Structure 5.1.2 Accessing Structure elements 5.1.3 Displaying Structure elements 5.2 Concept of pointer 5.2.1 Pointer notation 5.2.2 Pointer variables, declaration of pointer 5.2.3 Pointer arithmetic like increment and decrement operation.	Chalk-Board Demonstration Hands-on

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)		Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Implement format specifiers available in C language.		(*) Write a 'C'program to display hexadecimal, decimal, octal format of entered number using %d, %c. %i. %f, %g, %u, %o ,%s, %x, %n, %%,	2	CO1
LLO 2.1 Implement basic/input output statement of C language. LLO 2.2 Apply logical and bitwise operators on given data	2	 (*) Write a program to perform following operations. (a) Display the message "Hello World", name. address, date of birth and email id using print() function. (b) Logical operations: And(&), (OR) for given values, Bitwise operations: << (LEFT SHIFT), >> (RIGHT SHIFT) for given values 	2	CO1
LLO 3.1 Use header files to perform specific task. LLO 3.2 Determine equivalent value of parallel resister using a C program.	3	 (*) 1) Write a program to display current time and date using time.h header file. 2) Write a program to obtain the equivalent value for parallel resistor by assuming resistor values. 	2	CO1
LLO 4.1 Determine the bandwidth of amplifier using a C program.	4	(*) Write a program to Calculate bandwidth of given amplifier having higher 3 dB cutoff frequency at 20 KHz and lower 3dB cutoff frequency 50Hz. Display the bandwidth in KHz.	2	CO1
LLO 5.1 Implement If-else, if-else-if ladder for solving given task.	5	 (*) 1) Write a program to check whether given number is even or odd. 2) Write a program to determine leap year using "ifelse-if" ladder 	2	CO2

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 6.1 Implement post tested loop using do-while loop	6	Write a program to reverse a given number using do- while loop	2	CO2
LLO 7.1 Apply switch-case statement for implementing menu driven program.	7	(*) Write a C menu driven program to perform arithmetic operations using switch statement.	2	CO2
LLO 8.1 Use for loop to implement iteration.	8	(*) Write a program to print table of given number using for loop.	2	CO2
LLO 9.1 Apply Goto statement for implementing branching operation in C.	9	Write a program to implement goto statement	2	CO2
LLO 10.1 Use user defined functions to solve given task.	10	(*) Write a user defined function power (a, b) to calculate the value of a raised to b.	2	CO3
LLO 11.1 Implement call by value and call by reference	11	(*) Write a program to implement swapping of two integer by using following methodsi) call by valueii) call by reference	2	CO3
LLO 12.1 Implement inbuilt math functions to perform mathematical operations.	12	(*) Write a program to implement following math functions i) mod() ii) sqrt() iii)pow() iv)exp() v)sum() vi) round()	2	СОЗ
LLO 13.1 Implement inbuilt character functions to perform operations on character data type.	13	Write a program to implement following character function in C. i) islower() ii) isupper() iii) isxdigit() iv) tolower() v) toupper()	2	CO3

Practical / Tutorial / Laboratory Learning Outcome (LLO)		Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 14.1 Write a program to implement One -Dimensional array. LLO 14.2 Apply 2-Dimnesional array to perform matrix operations	14	 (*) 1) Write a program to store 10 numbers in an array and find sum of 10 numbers. 2) Write a program to perform following matrix operations using 2-D array Addition Subtraction Transpose Sum of digonal of matrix 	2	CO4
LLO 15.1 Perform string operations using standard library functions	15	Write a program to implement following Standard Library String Functions. i) strlen() ii) strcpy() iii) strcat() iv) strcmp() v) strrev()	2	CO4
LLO 16.1 Use structures to store multiple data types.	16	(*) Declare a structure Student consisting of following members: • rollno • name • address • percentage Write a program to take data of three students and display the same.	2	CO5
LLO 17.1 Create a C program for implementing pointers	17	Write C program to create, initialize, assign and access a pointer variable	2	CO5

Note: Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Virtual Labs

• Students are encouraged to solve IIT Virtual Labs assignment on any selected topic. Link for Virtual Labs: https://cse02-iiith.vlabs.ac.in/Introduction.html

MSBTE Approval Dt. 29/11/2023

Micro project

- Unit Convertor: Each batch will prepare a menu driven program to perform different operations unit conversion.
- Patterns: Each batch will prepare a program to display different number patterns
- Basic Mathematical Functions: Each batch will prepare a menu driven program to perform following operations: i) Pascal triangle ii) Armstrong No. iii) Floyd's triangle iv) HCF and LCM.
- Number Conversion System: Each batch will prepare a menu driven program to convert decimal number system to i) binary ii) Octal iii) Hexadecimal number system
- a) Bus Reservation System: Each batch will prepare a menu driven program to following operations i) Book a Ticket ii) List the information of all the tickets booked.

Note:

Microproject topics are suggestive topics, faculty can design the microproject topics as per the CO. The microproject has to be application based, laboratory-based or field-based as suggested by Teacher. Similar microprojects can be added by concerned faculty. For this course 2 hr per week are allocated for SL (Self Learning) in learning scheme. By considering 30 hr self learning work course teacher has to allocate one or two task may be combination of assignments and / or micro projects. Micro project is expected to complete as a group activity. Course teacher can assign specific learning or any other skill development task. According to task assign, course teacher can set rubrics for continuous (formative) type assessment. SLA marks shall be awarded as per continuous assessment record.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
	Hardware: Personal Computer, RAM minimum 2 GB onwards.	
1	Operating System: Windows 10 onwards / Linux	All
	Software: Turbo C / GCC / Visual Studio Code or any relevant C compiler.	

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	I	Basics of C Programming	CO1	8	0	0	0	0
2	II	Decision Control & Looping	CO2	6	0	0	0	0
3	III	Functions	CO3	6	0	0	0	0
4	IV	Arrays And Strings	CO4	5	0	0	0	0
5	V	Structures & Pointers.	CO5	5	0	0	0	0
		Grand Total	-	30	0	0	0	0

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

• Continuous assessment based on process and product related performance indicators. Each practical will be assessed considering 60% weightage to process and 40% weightage to product.t

Summative Assessment (Assessment of Learning)

• End of term examination (Lab performance) viva voce

XI. SUGGESTED COS - POS MATRIX FORM

	10		Progra	amme Outco	mes (POs)			S Ou	ogram Specifi Itcom (PSOs	ic es*
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	Zinginicer ing	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	1	PSO-2	PSO-
CO1	3	2	2	3	-	-	1			
CO2	3	2	3	3	-	-	1			
CO3	2	2	3	3		-	2			
CO4	2	2	3	3		-	2		_	
CO5	2	2	3	3		-	2			

Legends :- High:03, Medium:02, Low:01, No Mapping: -

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number		
1	Yashwant Kanetkar	Let Us 'C'	BPB Publication New Delhi ISBN:		
1	Tasiiwaiit Kaiictkai	Let Us C	978818331630		
2	E Balaguruswamy	Programming in 'C'	Tata McGrawHill New Delhi ISBN: 978-1-25-900461-2		
3	Brian W. Kernighan / Dennis	The C Programming	Pearson Publication ISBN: 10. 0131103628		
3	Ritchie	Language 2e			
4	Herbert Schildt	C: The Complete Reference	McGraw Hill ISBN: 978-0070411838		

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	www.tutorialpoint.com	Basics of C programming
2	www.cprogramming.com	Cprogramming.com covers both C in-depth, with both beginner-friendly tutorials, more advanced artic
3	www.sourcecodeworld.com	C programming made easier
4	www.programmiz.com	Website provides easy to learn study material with online compiler to learn C programming
5	www.indiastudycente.com	Online portal to study C programming
6	www.c4learn.com	Website provides easy to learn study material with online compiler to learn C programming

MSBTE Approval Dt. 29/11/2023

Semester - 2, K Scheme

^{*}PSOs are to be formulated at institute level