Question Bank of K scheme -Basic Physics(311305)
 Unit test-1

Academic year:- 2023-2024

Sem-1
Course:All

Unit 1: Units \& Measurements (CO1)

1) ----------Is the branch of science deal with study of matter, energy and their transformation in nature.
(a) physics
(b)chemistry
(c) biology
(d)math
2) -------- is basically a source of communication in engineering and science.
(a)Measurement
(b)accuracy
(c)unit
(d) counting
3) Necessity of measurement in science
(a)To identify varies laws, To verify varies laws
(b) number, Accuracy
(c) time, mass
(d) measurement, development.
4) Necessity of measurement in engineering
(a) Accurate prediction of physical quantities, Quality assurance of product
(b) Accurate prediction of chemical quantities, Quality assurance of product
(c) Accurate prediction of biological quantities, Quality assurance of product
(d) Accurate prediction of mathematical quantities, Quality assurance of product
5) The physical quantities which don't depend on any other quantities for its measurement are called ---
(a)fundamental physical quantities
(b) Derived physical quantities
(c) mathematical quantities
(d) chemical quantities
6) The physical quantities which depend on any other quantities for their measurement are called \qquad
(a) fundamental quantities
(b) Derived physical quantities
(c) mathematical quantities
(d) chemical quantities
7) The unit of fundamental physical quantity is called
(a) fundamental unit
(b) Derived unit
(c) magnitude
(d) quantity
8) The unit of Derived physical quantity is called \qquad
(a) Derived unit
(b) fundamental unit
(c) magnitude
(d) quantity
9) There are -------- fundamental physical quantity
(a) 7
(b) 6
(c) 5
(d) 8
10) Length, mass, time are----------- quantities
(a) fundamental physical quantities
(c) mathematical quantities
(b) Derived physical quantities
(d) chemical quantities
11) Electric current, thermodynamic temperature, Amount of substance, luminous intensity are---- quantities
(a) fundamental physical quantities
(b) Derived physical quantities
(c) mathematical quantities
(d) chemical quantities
12). -------------- --------------- are supplementary physical quantity
(a) Plane angle, solid angle
(b)length, time
(c)mass, current
(d) temperature, angle
13).Unit of Mass in SI system is-
(a)Kilogram
(b) second
(c) ampere
(d) candela
12) Unit of Time in SI system is-
(a) second
(b) Newton
(c) Joule/s
(d) Kilogram- meter
13) Unit of Electric current in SI system is \qquad
(a)Ampere
(b) Newton
(c) Joule/s
(d) Kilogram- meter
14) Unit of thermodynamic temperature in SI system is \qquad
(a)Kelvin
(b) Newton
(c) Joule/s
(d) Kilogram- meter
15) Unit of Amount of substance in SI system is
(a)Mole
(b) radian
(c) steradian
(d) degree
16) Unit of luminous intensity in SI system is-----------------
(a)Candela
(b) radian
(c) steradian
(d) degree
17) Unit of Plane angle in SI system is \qquad
(a)Radian
(b) dyne
(c) steradian
(d) degree
18) Unit of solid angle in SI system is- \qquad
(a)Steradian
(b)radian
(c)dyne
(d)degree
19) Unit of area in SI system is---------------
(a) square meter
(b)meter
(c) ampere
(d) tesla
20) The parameter used for calculating weight of the man is
(a) Length
(b) Mass
(c) Time
(d) None of these
21) The quantity measured in Kelvin is \qquad
(a) length
(b) mass
(c) time
(d) temperature
22) The unit of acceleration in S.I. is
(a) m / s
(b) km / h
(c) $\mathrm{m} / \mathrm{s}^{2}$
(d) $\mathrm{km} / \mathrm{h}^{2}$
23) The unit of force in C.G.S.is-
(a) pound force
(b) Newton
(c) kg force
(d) dyne
24) Kilogram meter per second square is the unit of \qquad
(a) force
(b) pressure
(c) work
(d) velocity
25) The unit of work is-----------
(a) Newton-meter
(b) Newton
(c) Joule/s
(d) Kilogram- meter
26) The unit of plane angle is-s--------
(a) degree Celsius
(b) radian
(c) steradian
(d) degree
27) The length of the table is 3 meter, here 3 is the ----
(a) standard
(b) unit
(c) magnitude
(d) quantity
28) Out of the fallowing which is not a requirement of standard unit------
(a) is should be same for all quantities
(b) it should be universally accepted
(c) it should be well defined
(d) it should be fixed with time and place
29) Very small time intervals are accurately measure by
(a) White dwarfs
(b) Quartz clocks
(c) Atomic clocks
(d) Pulsars
30) The.
...used for measurement of physical quantity is called unit of that quantity.
(a) Quantity
(b) dimension
(c) time
(d) standard
31) A quantity which can be measured (computed, quantified or enumerated) is known as......
(a) Fundamental quantity
(b) derived quantity
(c) physical quantity
(d) mechanical quantity
32) Length of table is 3 meter. In this example, 3 is the \qquad and meter is the \qquad of that quantity.
a) Magnitude, standard
b) number, Accuracy
c) standard, Magnitude
d) unit, Magnitude
33) Any measurement consist of two parts
a) Magnitude, standard
b) number, Accuracy
c) time, mass
d) measurement, development.
34) Which of the following units is a fundamental unit?
a) Mole
b) watt
c) lumen
d) joule
35) Which of the following units is a fundamental unit?
a) Mass
b) watt
c) lumen
d) joule
36) Which of the following units is a fundamental unit?
a) Meter
b) watt
c) lumen
d) joule
37) Which of the following units is a fundamental unit?
a) time
b) watt
c)lumen
d)joule
38) Which of the following units is a fundamental unit?
a) time
b) watt
c)lumen
d)joule
39) Which of the following units is a fundamental unit?
a) kilogram
b)watt
c)lumen
d) joule
40) Which of the following units is a fundamental unit?
a) ampere
b)watt
c)lumen
d)joule
41) Which of the following units is a fundamental unit?
a) Kelvin
b) watt
c) lumen
d)joule
42) Which of the following units is a fundamental unit?
a) candela
b) watt
c)lumen
d)joule
43) Which of the following units is a derived unit?
(a) meter
(b) mole
(c) ampere
(d)watt
44) Which of the following units is a derived unit?
(a) mole
(b) meter
(c) second
(d)lumen
45) Which of the following units is a derived unit?
(a) kilogram
(b) second
(c) Kelvin
(d)coulomb
46) Which of the following units is a derived unit?
(a) second
(b) meter
(c) candela
(d) Henry
47) Which of the following units is a derived unit?
(a) second
(b) meter
(c) ampere
(d) meter/second
48) Which of the following units is a derived unit?
(a) second
(b) meter
(c) ampere
(d) Newton
49) Which of the following units is a derived unit?
(a) second
(b) meter
(c) ampere
(d) ampere/meter
50) Which of the following units is a derived unit?
(a) second
(b) meter
(c) ampere
(d) meter/second square
51) Which of the following units is a derived unit?
(a) second
(b) meter
(c) ampere
(d) kilogram-meter/second
52) Which of the following units is a derived unit?
(a) candela
(b) meter
(c) ampere
(d) candela/square meter
53) Which of the following units is a derived unit?
(a) candela
(b) meter
(c) ampere
(d) tesla
54) Which of the following units is a derived unit?
(a) candela
(b) meter
(c) ampere
(d) candela/square meter
55) Which of the following the fundamental quantity \qquad
(a) length
(b) speed
(c) mass
(d) time
56) Out of the following the fundamental quantity is. \qquad
(a) Density
(b) pressure
(c) momentum
(d) time
57) Physical quantity which depends on one or more fundamental quantities for their measurement is called as..
(a) Fundamental quantity
(b) derived quantity
(c) MKS quantity
(d) CGS quantity
58) Which of the following is not a fundamental unit?
(a) meter
(b) kilogram
(c) Newton
(d) second
59) Out of the following the derived unit is....
(a) meter
(b) kilogram
(c) Newton
(d) joule
60) Pascal is the S.I. unit of.....
(a) force
(b) pressure
(c) density
(d) momentum
61) The system of units which are in use are......
a) C.G.S., M.K.S., P.S.T. and S.I.
(b) C.G.S., M.K.S., V.I.T. and S.I.
(c) C.G.S., M.K.S., P.S.T. and F.I.
(d) C.G.S., M.K.S., F.P.S. and S.I.
62) MKS means......
(a) micro-kg-sec
(b) milli-kilo-s
(c) $\mathrm{m}-\mathrm{kg}-\mathrm{s}$
(d) micro-kilo-s
63) In M.K.S. system, the units of length, mass and time are \qquad
(a) millisecond, kilohertz and second
(b) meter, kilogram and second
(a) millisecond, kilobyte and second
(b) mile, kilogram and second
64) CGS means
(a) calorie-grade-sec
(b) $\mathrm{cm}-\mathrm{g}-\mathrm{sec}$
(c) calorie-g-sec
(d) cm-grade-sec
65) The units of length, mass and time are centimeter, gram and second which are used in the system.
(a) C.G.S.
(b) M.K.S.
(c) F.P.S.
(d) S.I.
66) FPS means.....
(a) ft-lb-s
(b) farad-Pico-s
(c) femto-pound-s
(d) foot Pico-s
67) 1 gigahertz means.

Abstract

...

(a) $10^{6} \mathrm{~Hz}$
(b) $10^{3} \mathrm{~Hz}$
(c) $10^{12} \mathrm{~Hz}$
(d) $10^{9} \mathrm{~Hz}$
70) 1 millimeter means. \qquad
(a) $10^{-2} \mathrm{~m}$
(b) $10^{-3} \mathrm{~m}$
(c) $10^{-6} \mathrm{~m}$
(d) $10^{-9} \mathrm{~m}$
71) $10-{ }^{6}$ meter means....
(a) 1 mm
(b) 1 cm
(c) 1 nm
(d) 1 um
72) 1 nanometer equals to.....
(a) $10-{ }^{-}{ }^{m}$
(b) $10-{ }^{6} \mathrm{~m}$
(c) $10-{ }^{3} \mathrm{~m}$
(d) $10-{ }^{1} \mathrm{~m}$
73) The SI unit of intensity is \qquad ,
(a) ${ }^{0} \mathrm{c}$
(b) ${ }^{0}{ }_{k}$
(c) ${ }^{0} \mathrm{~F}$
(d) calorie
74) The SI unit of luminous intensity is \qquad ,
(a) ampere
(b) flux
(c) candela
(d) Weber
75) The SI unit of amount substance is \qquad -,
(a) Gram
(b) candela
(c) kilogram
(d) mole
76) The SI unit of solid angle is \qquad ,
(a) degree
(b) radian
(c) steradian
(d) degree Celsius
77) The SI unit of temperature gradient is \qquad ,
(a) ${ }^{0} \mathrm{c} / \mathrm{m}$
(b) ${ }^{0} \mathrm{k} / \mathrm{m}$
(c) $m /{ }^{0}{ }_{k}$
(d) ${ }^{0} \mathrm{c} / \mathrm{cm}$
78) The unit of area in M.K.S. system is \qquad
(a) hectare
(b) meter square
(c) guntha
(d) square feet
79) centimeter per second is the unit of speed in. \qquad
(a) S. I. system
(b) F.P.S. system
(c) M.K.S. system (d) C.G.S. system
80) The dimensions of a physical quantity are the ... to which fundamental units must be....to obtain the unit of a given Physical quantity
(a) scales calibrated
(b) system, scaled
(c) powers, raised
(d) false
81) To decide dimensions of a physical quantity, the unit of time is expressed by....
(a) 'S'
(b) ' 1 '
(c) ' M '
(d) ' T '
82) Dimensional formula for 'area' is.....
(a) $\left[\mathrm{L}^{2} \mathrm{M}^{0} \mathrm{~T}^{0}\right]$
(b) $\left[\mathrm{L}^{2} \mathrm{M}^{-1} \mathrm{~T}^{0}\right]$
(c) $\left[\mathrm{L}^{0} \mathrm{M}^{2} \mathrm{~T}^{1}\right]$
(d) $\left[L^{0} \mathrm{M}^{0} \mathrm{~T}^{2}\right]$
83) Dimensional formula for 'density' is.....
(a) $\left[L^{1} M^{-3} T^{0}\right]$
(b) $\left[\mathrm{L}^{-3} \mathrm{M}^{1} \mathrm{~T}^{0}\right]$
(c) $\left[L^{1} M^{0} T^{3}\right]$
(d) $\left[L^{3} M^{1} T^{0}\right]$
84) Out of the following which physical quantity has dimensional formula $\left[L^{-1} M^{1} T^{2}\right]$?
(a) force
(b) acceleration (c) velocity
(d) density
85) The Dimensional formula for velocity is--------
(a) $\left[\mathrm{L}^{1} \mathrm{M}^{0} \mathrm{~T}^{1}\right]$
(b) $\left[\mathrm{L}^{1} \mathrm{M}^{2} \mathrm{~T}^{1}\right]$
(c) $\left[\mathrm{L}^{-1} \mathrm{M}^{1} \mathrm{~T}^{0}\right]$
(d) $\left[L^{1} \mathrm{M}^{1} \mathrm{~T}^{-1}\right]$
86) In the dimensional equation $\left[L^{a}, M^{b}, T^{c}\right] \quad\left[\begin{array}{c}a \\ , ~ b, ~ \\ ,\end{array}\right]$ are called
(a) Dimensional formula
(b) dimensions
(c) basic quantities
(d) derived quantities
87) $\left[\mathrm{L}^{1} \mathrm{M}^{0} \mathrm{~T}^{-1}\right]$ are the dimensions of the quantity.....
(a) acceleration
(b) density
(c) speed
(d) area
88) Dimensions of...and are same.
(a) pressure, stress
(b) work, force
(c) velocity, acceleration
(d) Length, mass
89) Error isin a given measurement.
(a) mistake
(b) accuracy
(c) uncertainty
(d) certainty
90) The difference between true value and measured value is known as. \qquad
(a) error
(b) precision (c) mistake
(d) accuracy
91) cannot be eliminated but they can be minimized
(a) errors
(b) mistake
(c) accuracy
(d) precision
92).An error caused due to faulty instrument is called
(a) systematic error
(b)random error
(c)personal error
(d)constant error
93). For less error, measurement is
(a) more accurate
(b)less accurate
(c) constant accurate
(d) both (a) and (b)
94). What is the unit for measuring the amplitude of a sound?
(a) Decibel
(b) Coulomb
(c) Hume
(d) Cycles
95). One nanometer is equal to,
(a) $10^{-6} \mathrm{~m}$
(b) $10^{-8} \mathrm{~m}$
(c) $10^{-9} \mathrm{~m}$
(d) $10^{-5} \mathrm{~m}$
96). One fathom is equal to
(a) 6 feet
(b) 6 meters
(c) 60 feet
(d) 100 cm
97). Light year is a measurement of
(a) Speed of airplanes
(b) Speed of light
(c) Stellar distances
(d) Speed of rockets
98). One kilometer is equal to how many miles?
(a) 0.84
(b) 0.5
(c) 1.6
(d) 0.62
99). 'Bar' is the unit of
(a) Temperature
(b) Heat
(c) Atmospheric pressure
(d)Current
100) Nautical mile is a unit of distance used in
(a) Navigation
(b) road mile
(c) Astronomy
(d) Measuring the boundaries
101) How many dynes are there in 1 gram weight?
(a) 900
(b) 375
(c) 981
(d) 250
102) Joule is the unit of
(a) Temperature
(b) pressure
(c) Energy
(d) Heat
103) how many ergs are in 1 Joule
(a) 10^{2}
(b) 10^{4}
(c) 10^{6}
(d) 10^{7}
104). Very small time intervals are accurately measure by
(a) White dwarfs
(b) Quartz clocks
(c) Atomic clocks
(d) Pulsars
105). Electric current is measure by
(a) Commentator
(b) Anemometer
(c) Ammeter
(d) Voltmeter
106). One horse power is equal to
(a) 746 watts
(b) 748 watts
(c) 756 watts
(d) 736 watts
107). Kilowatt is a unit to measure
(a) Work
(b) Power
(c) Electricity
(d) Current
108). Kilohertz is a unit which measures
(a) Power used by a current of one ampere
(b) Electromagnetic radio wave frequencies
(c) Voltage
(d) Electric resistance
109). One Joule is equal to
(a) 10^{2} ergs
(b) $10^{4} \mathrm{ergs}$
(c) 10^{6} ergs
(d) 10^{7} ergs
110). Fathom is the unit of
(a) sound
(b)Depth
(c) Frequency
(d)Distance
111) Light year is a unit of
(a) time
(b) distance
(c) sunlight intensity
(d) mass
112). The dimensional formula for Planck's constant is
(a) $[\mathrm{MLT}]$
(b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(c) $\left[\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
(d) $\left[\mathrm{ML}^{1} \mathrm{~T}^{-1}\right]$
113). The surface tension of a liquid is 70 dyne $/ \mathrm{cm}$. In MKS system its value is
a) $70 \mathrm{~N} / \mathrm{m}$
(b) $7 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
(c) $7 \times 10^{2} \mathrm{~N} / \mathrm{m}$
(d) $7 \times 10^{3} \mathrm{~N} / \mathrm{m}$
114). The dimensions of Kinetic energy is same as that of
(a) Force
(b) Pressure
c) Work
(d) Momentum
115). At $4^{\circ} \mathrm{C}$, the density of water is equal to
(a) $10^{-3} \mathrm{~kg} \mathrm{~m}^{-3}$
(b) $10^{-2} \mathrm{~kg} \mathrm{~m}^{-3}$
(c) $10 \mathrm{~kg} \mathrm{~m}^{-3}$
(d) $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
116). One watt hour contains how many joules?
(a) $3.6 \times 10^{8} \mathrm{~J}$
(b) $3.6 \times 10^{2} \mathrm{~J}$
(c) $3.6 \times 10^{3} \mathrm{~J}$
(d) $10^{-3} \mathrm{~J}$
117). Which of the following pairs has the same dimensions?
(a) Specific Heat and Latent Heat
(b) Impulse and Momentum
(c) Surface Tension and Force
(d) Moment of Inertia and Torque
118). Electron volt is a unit of
(a) Charge
(b) Potential difference
(c) Energy
(d) Magnetic Force
119). There are 20 divisions in 4 cm of the main scale. The vernire scale has 10 divisions. The least
count of the instrument is
(a) 0.05 cm
(b) 0.5 cm
(c) 5.0 cm
(d) 0.005 cm
120). $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$ is the dimensional formula of
(a) force
(b) coefficient of friction
(c) modulus of elasticity
(d) energy
121) The dimensional formula of coefficient of viscosity is
(a) $\left[\mathrm{MLT}^{-1}\right]$
(b) $\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
(d) none of these
122). On the basis of dimensional equation, the maximum number of unknown that can be found, is
(a) one
(b) two
(c) three
(d) four
123). If v stands for velocity of sound, E is elasticity and d the density, then find x in the equation $\mathrm{v}=(\mathrm{d} / \mathrm{E})^{\mathrm{x}}$
(a) 1
(b) $1 / 2$
(c) 2
(d) $-1 / 2$
124). The multiplication of 10.610 with 0.210 up to correct number of significant figure is
(a) 2.2281
(b) 2.228
(c) 2.22
(d) 2.2
125). The S.I. unit of universal gas constant is
(a) Watt K-1mol-1
(b) N K-1mol-1
(c) JK-1mol-1
(d) erg K-1mol-1
126). Dimensional formula of thermal conductivity is
(a) $\mathrm{ML}^{2} \mathrm{~T}^{-3} \theta^{-1}$
(b) $\mathrm{ML}^{2} \mathrm{~T}^{-2} \theta^{-4}$
(c) $\mathrm{ML}^{2} \mathrm{~T}^{-2} \theta^{-1}$
(d) MLT $^{-3} \theta^{-1}$
127). Three measurements 7.1J, 7.2 J and 6.7 J are made as experiment the result with correct number of significant figures is
(a) 7.1 J
(b) 7.06 J
(c) 7.0 J
(d) 7 J
128). Substances which larger masses are usually measured in
(a) Kilograms
(b) grams
(c) tones
(d) metric tones
129). An instrument which gives a level of high accuracy than mechanical watch is
(a) electronic stopwatch
(b)stop clock
(c)pendulum clock
(d)hour glass
130). In SI system unit of area is
(a) meter
(b)square
(c) meter square
(d)meter cube
131). A single system on which all scientists all over the world agree for units of measurement is called
(a) SI units
(b) International System of units
(c) both a and b
(d) universal system
132). Electronic stop watch gives a display of digital reading along with accuracy up to
(a) 0.01 s
(b) 0.1 s
(c) 0.10 s
(d) 1 s
133).An average speed of an aero plane is equal to
(a) $300 \mathrm{~m} / \mathrm{s}$
(b) $100 \mathrm{~m} / \mathrm{s}$
(c) $500 \mathrm{~m} / \mathrm{s}$
(d) $50 \mathrm{~m} / \mathrm{s}$
134). Unit of Force is Newton and its symbol is
(a) N
(b) F
(c) A
(d)G
135). If symbol of unit is a capital letter still its unit name will start from
(a) small case letter (b)capital
letter \quad (c) italic letter \quad (d) bold letters
136).To change SI units by ten into smaller or bigger units they uses
(a) prefixes (b)suffixes
(c) symbols
(d) ratios
137). Mercury thermometer is used to measure exact
(a) time
(b) length
(c)temperature
(d)pressure
138). First made instrument by Egyptians in year 800 BC for measuring time was
(a) sundial
(b)compass
(c)stop watch
(d)pendulum clock
139). In SI system unit for speed is written as
(a) meter
(b)meter/sec
(c)meter/hour
(d) $\mathrm{km} / \mathrm{sec}$
140). In science objective and precise observationsare mostly used which are
(a) qualitative
(b)
quantitative
(c) both a and b
(d) respective141).Most common used i
(c) both a and b
(d) vernier caliper
laboratory is a (a) meter ruler
(b) half meter ruler
142). Higher speed is seen in an
(a) faster moving object
(b) slower moving object
(c)constant moving
object
(d)still object
143). An average speed is equal to total distance which is travelled divided by
(a) taken time
(b) speed limit
(c)direction
(d)area
144). Types of balance includes
(a) beam balance
(b)electronic balance
(c)both a and b
(d)natural balance
145). In old days methods of measuring were
(a)Inaccurate
(b)correct (c)accurate
(d)perfect
146).In our everyday life activities, we need
(a)estimations
(b) accurate measurements
(c) both a and b
(d) appearances
147). For very short intervals we mostly use
(a)stop clocks
(b) stop watches
(c)both a and b
(d)wall clocks
148). Apparatus commonly used to measure volume of liquids is (a) measuring cylinder (b)measuring tapes (c) jar (d) cylinder149).Standard meter is defined as distance which is travelled by light in $1 / 299792458$ of a second through (a)vacuum
(b) space
(c) air
(d) water
150). Hour glass was used in past days to know
(a)time
(b)length
(c)mass
(d)volume
151).Sonya is tall is observation which is
(a)qualitative
(b) quantitative
(c) both a and b
(d)respective
152). Length of distance which is covered in specific time is called
(a) distance
(b) displacement
(c) speed
(d) force
153).Special feature of a Vernier caliper is that it can measure up to (a). 0.1 mm
(b) 1 mm
(c) 2 mm
(d) 0.10 mm 154). Sum of amount of matter in a substance is called its
(a) mass
(b) weight
(c) length
(d) volume
155). Amount of 1 liter contains
(a) 100 ml
(b) 1000 ml
(c) 10 mm
(d) 10 kg
158). $10,000 \mathrm{~m} / \mathrm{sec}$ is speed of a
(a) aero plane
(b) rocket
(c) satellite signal
(d) car
159).Kilo means in SI is one
(a) thousand
(b) hundred
(c) ten
(d) million
160) The errors due to sudden change in experimental conditions are called
(a) instrumental errors
(b) systematic errors
(c)random errors
(d) force errors
161). Smallest division which is found in a measuring tape is
(a) 1 mm
(b) 10 mm
(c) 5 mm
(d) 0 mm
162). To measure shorter distances or lengths one can use
(a) meter ruler
(b)half meter ruler
(c)both a and b
(d)Vernier caliper
163). Km are used to measure
(a) shorter distance
(b)longer distances
(c)toys
(d)bottles
164). In equation form speed is written as
(a) time $=$ distance/speed
(b)distance $=$ speed*time
(c)speed=distance travelled/time taken
(d) all of them
165). Metric system is a system which is standard of
(a) measurement
(b)living things
(c)experimenting
(d)analysis
166).Instrument which can be used to measure length includes
(a) measuring tapes
(b) meter ruler
(c) Vernier caliper
(d) all of them
167). Vernier caliper helps in measuring
(a) external diameter
(b)internal diameter
(c) thickness and depth of narrow tubes
(d) all of them
168). Error which is most common in measurements is due to wrong placement of eye while taking readings is called
(a) parallax error
(b)eye error
(c)common error
(d)free error
169). Volume of liquids can be measured by using different instruments which includes
(a)cylinders
(b)volumetric flasks
(c)burettes or pipettes
(d)all of them
170). Road signs like $50 \mathrm{~km} / \mathrm{h}$ are warning to drive in given
(a)area
(b) speed limit
(c)direction
(d) distance
171). In SI system unit of volume is
(a) meter square
(b) cubic meter
(c)meter
(d)kilometers
172). To measure shorter lengths with their accurate reading we use
(a) measuring tapes
(b)meter ruler
(c)Vernier caliper
(d)all of them
173). Kilogram standard is kept in France which is a metal cylinder made of
(a) platinum
(b)iridium
(c)both a and b
(d)iron
174). To measure mass instrument used is a
(a)balance
(b)cylinder
(c)weight machine
(d)flask
175). Distances up to several hundred meters are measured by help of a
(a)measuring tapes
(b)meter ruler
(c)Vernier caliper
(d)all of them
176). 0.1 mm is accuracy of a
(a)measuring tapes
(b)meter ruler
(c)Vernier caliper
(d)_a and b
177). In physics, a common instrument to measure diameter of a circle is known as
(a)Rule (b)measuring tape
(c) calipers
(d)inch tape
178). A physical quantity consists of a
(a)Analogical Magnitude
(b)Numerical magnitude
(c)Alphabetical Magnitude
(d)Symbolic Magnitude
179). Range of Vernier calipers is
(a) 1 cm to 10 cm
(b) 1 cm to 5 cm
(c) 1 cm to 6 cm
(d) 1 cm to 20 cm
180). Precision of micrometer screw gauge is
(a) 0.1 cm
(b) 0.01 mm
(c) 0.1 mm
(d) 0.01 m
181). Range of measuring tape is
(a) 1 meter
(b) several meters
(c) two meters
(d)half meter
182). Precision of Vernier calipers is
(a) 1 mm
(b) 1 cm
(c) 0.1 mm
(d) 0.1 cm
183). Minimum length an instrument can measure is called its
(a)accuracy
(b)estimate
(c)precision
(d)limitations
184). SI unit for length is
(a)centimeter
(b)inches
(c)meter
(d)yards
185). The symbol to represent "Amount of Substance" is
(a) A
(b)K
(c) cd
(d)mol
186). Quantities other than base quantities are termed as
(a)Derived quantities
(b)Base quantities
(c)Professional quantities
(d)Energetic quantities
187). The reference standard used for the measurement of a physical quantity is called \qquad .
(a) standard quantity
(b) dimension
(c) constant
(d) unit
188). Which of the following is NOT a characteristic of a good unit?
(a) It is invariable.
(b) It is reproducible.
(c) It is perishable.
(d) It is easily available.
189). Units are classified into \qquad groups.
(a) 2
(b) 4
(c) 5
(d) 6
190). A set of fundamental and derived units is known as \qquad .
(a) supplementary units
(b) system of units
(c) complementary units
(d) metric units
191). The physical quantity having the same unit in all the systems of unit is \qquad .
(a) length
(b) time
(c) mass
(d) foot
192). S.I system of unit contains ___ supplementary unit.
(a) 7
(b) 2
(c) many
(d) 4
193). In which of following system, scientific data can be exchanged between different parts of the world?
(a) M.K.S.
(b) C.G.S.
(c) F.P.S.
(d) S.I.
194). Out of the following units, which is NOT a fundamental unit?
(a) newton
(b) second
(c) pound
(d) kg
195). Temperature can be expressed as a derived quantity in terms of
(a) length and mass
(b) mass and time
(c) length, mass and time
(d) none of these
196). Which of the following is NOT a derived unit?
(a) joule
(b) erg
(c) dyne
(d) mole
197). Which of the following is the CORRECT way of writing units?
(a) 25 ms length
(b) 30 Kg
(c) 5 Newton
(d) 10 N
198). To measure the distance of a planet from the earth \qquad method is used.
(a) echo
(b) direct
(c) parallax
(d) paradox
199). The mass of the body depends only on
(a) temperature
(b) pressure.
(c) quantity of matter contained in the body.
(d) location of the body from the observer.
200) Which of the physical quantity remains same for all unit system ?
(a) meter
(b) second
(c) ampere
(d) kilogram
201) Which type of errors cannot be controlled?
(a) Random errors
(b)Experimental errors
(c) Instrumental errors
(d) Systematic errors
202) How to minimize the errors in the measurement?
(a)Taking a large magnitude of the quantity to be measured
(b)taking large number of readings and find its mean value
(c) Using an instrument whose least count is small
(d] All of the above
203) The ratio of mean absolute error in the measurement of physical quantity to mean value is called
(a) absolute error
(b) relative error
(c) random error
(d) experimental error
204) A figure which is of some significance but it does not necessarily denote a certainly is called
(a) significant figure
(b) basic figure
(c)numbering figure
(d) decimal figure
205) The mass and volume of a plate are 4.237 kg and $2.51 \mathrm{~m}^{3}$ respectively. Find density of plate in S.F.
(a) $1.688 \mathrm{~kg} / \mathrm{m}^{3}$
(b) $1.69 \mathrm{~kg} / \mathrm{m}^{3}$
(c) $1.6880 \mathrm{~kg} / \mathrm{m}^{3}$
(d) $1.6890 \mathrm{~kg} / \mathrm{m}^{3}$
206) Which of the following is unit of length
(a) lunar month
(b) kelvin
(c) candela
(d) light year
207) Systametic error occured due to poor calibration of instrument that can be corrected by
(a) taking several readings
(b) replacing instruments
(c)taking mean values
(d) taking median of values
208) Error that occurs due to equally affected measurement is called
(a) random error
(b) systematic error
(c)frequent error
(d) precision
209) The percentage error in the distance $100+5 \mathrm{~cm}$ is
(a) 5%
(b) 6%
(c) 8%
(d) 20%
210) In an experiment to determine the density of a cube, the percentage error in the measurement of mass is 0.25% and the percentage error in the measurement of length is 0.50% what will be the percentage error in the determination of its density ?
(a) 2.75%
(b) 1.75%
(c) 0.75%
(d) 1.25%
211) Which of the following numerical value have significant figure 4 ?
(a) 1.011
(b) 0.010
(c) 0.001
(d) 0.100
212) What is the number of significant figures in $5.50 \times 10^{\circ}$
(a) 2
(b) 7
(c) 3
(d) 4
213) The area of a rectangle of size $1.25 \mathrm{~cm} \times 2.245 \mathrm{~cm}$ in significant figure is
(a) $2.80625 \mathrm{~cm}^{2}$
(b) $2.81 \mathrm{~cm}^{2}$
(c) $2.806 \mathrm{~cm}^{2}$
(d) $2.8062 \mathrm{~cm}^{2}$
214)The significant figures in 500.5000 are
(a) 5
(b) 3
(c) 7
(d) 6
215) Addition of measurement $15.225 \mathrm{~cm}, 7.21 \mathrm{~cm}$ and 3.0 cm in significant figure is
(a) 25.43 cm
(b) 25.4 cm
(c) 25.435 cm
(d) 25.4350 cm .
216) The measured value of a resistance is 10.25 ohm , whereas its value of 10.22 ohm . What is absolute error of the measurement?
(a) 0.01 ohm .
(b) 0.03 ohm .
(c) 15.36 ohm.
(d) 10.26 ohm.
217)The multiplication of 10.610 with 0.210 upto correct number of significant figure is
(a) 2.2281
(b) 2.228
(c) 2.22
(d) 2.2
218)The ratio of average absolute error to mean reading is called \qquad
a)Average absolute error
b)Absolute error
c)Relative error
d)Relative error
219) Same person may get different readings because of human limitations,this comes under,
a)Instrumental error
b)Constant error
c)Random error
d)Personal error
220)Out of the following ,the most accurate instrument is,
a)Measuring tape
b)Meter scale
c) Vernier caliper
d)Micrometer screw gauge
221)A significant figure is defined as a figure in any place which is reasonably \qquad
a)Non considerable
b)Meaninigless
c)Not important
d)Meaningful
222) A figure which has some significance but it does not necessarily denote a certainty is called,
a)Significant figure
b)Basic figure
c)Numbering figure
d)Decimal figure
223)The digits $1,2,3,4,5,6,7,8,9$ are \qquad
a)Not significant
b)Sometimes Significant
c)Always significant
d) All of the above
224) If distance between Mumbai to Pune by train is 90.5 km , in this, zero is \qquad
a)Not significant
b)Significant
c)May be significant
d)May not be significant
225) The number of significant figure in measurement of 2.34×10^{11}
a) 1
b) 2
c) 3
d) 4
226) $200 \mu \mathrm{~F}$ is equal to \qquad .
a) $200 \times 10^{-9} \mathrm{~F}$
b) $200 \times 10^{6} \mathrm{~F}$
c) $200 \times 10^{-6} \mathrm{~F}$
d) $200 \times 10^{9} \mathrm{~F}$
227) 2000 pF is equal to \qquad .
a) $2000 \times 10^{6} \mathrm{~F}$
b) $2000 \times 10^{-6} \mathrm{~F}$
c) $2000 \times 10^{9} \mathrm{~F}$
d) $2000 \times 10^{-12} \mathrm{~F}$
228) Length of the table is 3 m . Convert this into mm
a) $3 \times 10^{-3} \mathrm{~mm}$
b) $3 \times 10^{3} \mathrm{~mm}$
c) $3 \times 10^{-2} \mathrm{~mm}$
d) $3 \times 10^{2} \mathrm{~mm}$
229) 220 cm is equal to \qquad
a) $220 \times 10^{-2} \mathrm{~m}$
b) $220 \times 10^{2} \mathrm{~m}$
c) $220 \times 10^{3} \mathrm{~m}$
d) $220 \times 10^{-3} \mathrm{~m}$
230) 10^{-6} meter means
a) 1 mm
b) 1 cm
c) 1 nm
d) $1 \mu \mathrm{~m}$
231) The Chakra Yantra is used to find out the right ascension and declination of \qquad .
a) Earth
b)Planet
c)Sun
d) Moon.
232) was the one of the popular Indian astronomer and Mathematician.
a) Bhaskaracharya
b) Charudatta
c) Ram Dass
d) Rohidas
233) \qquad developed and designed many astronomical instruments.
a) Charudatta
b) Ram Dass
c) Bhaskaracharya
d) Rohidas
234) Bhaskaracharya wrote a book named \qquad in which he recorded astronomical observations.
a) Yayati
b) Mrutunjay
c) Siddhānta-Śiromani
d) Jayant Narlikar
235) \qquad recorded very creditable observations like earth is a sphere and not flat, earth rotates around sun and much more.
a) Ancient Indian Navy
b) Ancient Indian experts
c) Ancient Indian soldier
d) Ancient officer
236) \qquad which means disk machine.
a) Dhanu Yantra
b) Chakra Yantra
c) Yasti Yantra
d)Phalak Yantra
237) \qquad instrument is a type of protractor used for angular marking of land and angular positioning of cities.
a) Dhanu Yantra
b) Chakra Yantra
c) Yasti Yantra
d)Phalak Yantra
238) \qquad .was also used to measure time and to measure some astrological parameters like 'natta' and 'unnatta'.
a) Chakra Yantra
b) Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
\qquad is a ring instrument which measures the global co-ordinates of declination and the hour angle of a celestial object
a) Yasti Yantra
b)Phalak Yantra
c) Dhanu Yantra
d) The Chakra Yantra
240) \qquad was used for finding boundaries of planets and stars using angular terms.
a) Chakra Yantra
b) Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra 241) \qquad is called disk machine
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
242) \qquad was used for determining the altitude.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
243) \qquad was used for determining height of the place from sea level.
a)Yasti Yantra
b)Phalak Yantra
c) Chakra Yantra
d) Dhanu Yantra
244) \qquad .was used for determine longitude of planet
a)Yasti Yantra
b)Phalak Yantra
c) Chakra Yantra
d) Dhanu Yantra
245) \qquad was used for determine Zenith distance of sun.
a) Yasti Yantra
b)Phalak Yantra
c) Chakra Yantra
d) Dhanu Yantra
246) \qquad was used for determine average angular possition.
a)Yasti Yantra
b)Phalak Yantra
c) Chakra Yantra
d) Dhanu Yantra
247) \qquad is a simple wooden disk having hole at the center.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
248) Least count or the smallest division of Chakra Yantra is. \qquad
a) 6^{0}
b) 5^{0}
c) 2^{0}
c) 4^{0}
249) \qquad means height point the sun reaches above our head
a) nadir
b)zenith
c) ridian
d) declination
250) The Chakra yantra was used for measurement of
a) Land marking
b) Time
c) angular position of cities
d) all of the above
251) The Chakra yantra is called \qquad
a) phalaka machine
b) stick machine
c)disk machine
d) all of the above
252) 'Natta' and 'Unnatta' is used to calculate the
a) mass
b) time
c) temperature
d) all of the above
253) In Chakra Yantra, the angle between the stick's shadow and the horizontal line is called. \qquad
a) time
b) Dhi
c) Natta
d) Unnatta
254) In Chakra Yantra, the angle between the stick's top point of disk and shadow of the stick.
a) time
b) Dhi
c) Natta
d) Unnatta
255) The top point of a vertical line on a chakra yantra is called the \qquad
a) head
b) tail
c) Natta
d) Khardha
256) 'Natta' and 'Unnatta' were measured by \qquad
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
257) \qquad which means disk Instrument.
a) Dhanu Yantra
b) Chakra Yantra
c) Yasti Yantra
d)Phalak Yantra
258) which of the following is unit of length \qquad
a) candela
b)light year
c)mole
d)lunar month
259) Dhanu Yantra is known as \qquad yantra.
a) charka
b)Chaapa
c)circular
d) disk
260) Chaapa means a \qquad
a) circle
b)squre
c)traingle
d) semicircle
261) Chaapa is a \qquad word.
a) Marathi
b)Hindi
c)English
d) Sanskrit
262) Dhanu Yantra is known as.........disk machine.
a) circle
b) squre
c) traingular
d) semicircular
263) \qquad was used for measurement of vertical angle
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
264). \qquad was used for measurement of height of the terrestrial objects.
a) Chakra Yantra
b) Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
265). \qquad was used for measurement of diameter of moon.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
266) \qquad was used for measurement of diameter of earth.
a) Chakra Yantra
b) Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
267) \qquad .was used for measurement of circumference of earth.
a) Chakra Yantra
b) Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
268) \qquad ..was used for measurement of distance between moon and the earth.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
269) Dhanu Yantra is half of the \qquad
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
\qquad .is used to measure height of the object using trigonometric formulae.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
271) Yasti Yantra was developed by the great mathematician and astronomer.
a) Charudatta
b) Ram Dass
c) Bhaskaracharya
d) Rohidas
272) Yasti Yantra is refered as \qquad
a) Chi
b) Dhi
c) Dahi
d) Ghi
273) \qquad means a machine to be used with intelligence
a) Chakra Yantra
b)Dhi Yantra
c)Phalak Yantra
d) Dhanu Yantra
274) Yasti means a \qquad
a) Chakra
b)Stick
c)Phalak
d) Dhanu
275) \qquad Yantra is V shaped.
a) Chakra Yantra
b)Dhi Yantra
c)Phalak Yantra
d) Dhanu Yantra
276) Yasti Yantra is known as \qquad
a) Chakra Yantra
b) Cross staff
c)Phalak Yantra
d) Dhanu Yantra
278) \qquad has developed his unique method to calculate the height of terrestrial objects like trees and mountains.
a) Bhaskaracharya
b) Charudatta
c) Ram Dass
d) Rohidas
279). \qquad .instrument was used for land survey.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
280) An instrument consisted of a rectangular board with a pin and an index arm.
a) Chakra Yantra
b) Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
281) \qquad used to determine time from the sun's altitude.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
282) The hour angle of the sun was measured by \qquad
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
283) \qquad used for finding position of celestial objects .
a) Chakra Yantra
b) Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
284) \qquad used for finding inclination of planets and stars.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
285). \qquad used for finding declination of planets and stars.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
\qquad developed phalaka yantra to measuer the hour angle .
a) Bhaskaracharya
b) Charudatta
c) Ram Dass
d) Rohidas
287) \qquad consists horizontal circular plate marked with concentric circles and stick hinged at centre.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
289) \qquad is a flat plate having hole at the center.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
290). \qquad is the angle between imaginary line joining observer to sun and the horizontal plane on the earth.
a) Altitude angle
b) cone angle
c) solid angle
d) angle of rotation
291) \qquad is an instrument to calculate the time graphically from the Sun altitude.
a) Chakra Yantra
b)Yasti Yantra
c)Phalak Yantra
d) Dhanu Yantra
292) The natural meaning of Dhi is
a) intelligence
b) small
c) big
d)narrow
293) Dimensions of kinetic energy is the same as that of \qquad
a)Acceleration
b)Velocity
c) Work
d)Force
294) Electron volt is a unit of
a)Luminosity
b)Frequency
c)Force
d)Energy
295) Which is the system of unit
a)SMS system
b)MKP system
c)FPS System
d)CJS System
296) The pair of quantities having the same dimensions is
(a) displacement, velocity
(b) time, frequency
(c) wavelength, focal length
(d) force, acceleration
297) Average distance of the Sun from the Earth
(a) light year
(b) astronomical unit
(c) Fermi
(d) parsec
298)Dimensional analysis can be applied to
(a) to check the correctness of a physical equation.
(b) to derive the relationship between different physical quantities.
(c) to convert a physical quantity from one system of units to other.
(d) All of the above

Unit 2 : Electricity,Magnetism \& Semiconductors (CO2)

1)The electricity developed on a body, when it is rubbed on other body is called as,
a)Current electricity
b) Magnetic electricity
c)Frictional electricity
d)None of these
2) In an neutral atom number of electrons are,
a)Same as protons
b)less than protons
c) More than protons
d) None of these
3) The principle of conservation of charges state that, the total charges on isolated system remains,
a)constant
b) variable
c)Small
d)Large
4)The surplus or lack of an electron in a body gives the concept of ,
a)Capacitance
b)Coulomb
c) Charge
d)Neutrons
5)The types of electric charges are,
a) Small \& High
b)Positive \& Negative
c)Nano \& Milli
d)None of these
6)The force of attraction or repulsion between two electric charges is known as,
a)Magnetic force
b)Mechanical force
c) Electrostatic force
d)Frictional force
7) Which of the following is a correct statement?
a) Like charges attract and unlike charges repel
b) Like as well as unlike charges attract each other
c) Unlike charges attract each other and like charges repel each other
d) Like as well as unlike charges repel each other
8) If two equal strength charges are placed in air. \qquad . apart from each other and if they exert a force of . \qquad on each other, then each charge is said to be a unit charge or charge of 1 coulomb.
a) $9 \times 10^{9} \mathrm{~m}, 1 \mathrm{~N}$
b) $9 \times 10^{-9} \mathrm{~m}, 1 \mathrm{~N}$
c) $1 \mathrm{~m}, ~ 9 \times 10^{9} \mathrm{~N}$
d) $1 \mathrm{~m}, 9 \times 10^{-9} \mathrm{~N}$
9)As distance between two electric charges decreases, the electrostatic force between them,
a)Increases
b)Decreases
c)Remains same
d)Reduces
10) Coulomb's inverse square law states that the force of attraction or repulsion between the two charges in a given medium is proportional to product of strengths of two charges and __ proportional to square of distance between them.
a)Inversely, Directly
b)Directly,Directly
c)Inversely, Inversely
d)Directly,Inversely
11)The unit of electric charge is,
a) Weber
b)Joule
c)Ampere
d)Coulomb
12) If two equal strength charges are placed in air one meter apart from each other and if they exert a force of $9 \times 10^{-9} \mathrm{~N}$ on each other, then each charge is said to be a charge of
a)Nine coulomb
b)Nine Newton
c)One Coulomb
d)One Newton
13)Dielectric constant of a medium w.r.t.vaccum is the
a)ratio of permittivity of vaccum to permittivity of medium
b) ratio of permittivity of medium to permittivity of vaccum
c) product of permittivity of vaccum to permittivity of medium
d) None of these
14) The ratio of permittivity of medium to permittivity of vaccum is called as
a)Coulomb's constant
b)Magnetic Constant
c)Dielectric constant
d)Newton's constsnt
15)Materials which doesn't allow current to flow through them but show electrical effects are called as
a) Dielectrics
b) Electrics
c) Conductor
d)Permittivities
16) The value of dielectric constant for air is,
a) 0
b) 1
c) 2
d) 3
17)The value of dielectric constant of a medium other than air is
a)less than 1
b) 0
c) 1
d) greater than 1
18)The value of dielectric constant of a metal is,
a) 0
b) 1
c) greater than 1
d) Infinity
19)The space around an electric charge in which force of attraction or repulsion is effective is known as,
a) Electric field
b) Magnetic field
c) Gravitational field
d) None of these
20) The intensity of electric field at appoint due to a point charge is defined as,
a)Charge per unit electrostatic force
b)Product of charge \& electrostatic force
c)Charge per unit electric field
d)electrostatic force acting on unit positive charge at that point
21)The unit of Electric field intensity is,
a) C / N
b)N/C
c) NC
d) $\mathrm{ohm} / \mathrm{m}$
22)Electric field intensity of a charge depends on,.......
a) Medium in which charge is placed
b)Nature of charge

