Question Bank (I scheme - Unit test 2)

Name of subject: Applied Mathematics Subject code: 22206/22224/22210 Semester: II Unit Test : II Course : CH/CM/EJ/IF/IS/ME

<u>Chapter 1</u> (APPLICATION OF INTEGRATION) ------(CO 3)

2 marks-

- 1) Find the area bounded by the curvey = 3x 2 from x = 1 to x = 3.
- 2) Find the area bounded by the parabola $y=x^2 2x$ with x- axis.
- 3) Find the area bounded under the curvey= $x^3 5x^2 + 4x$ from x = 0 to x = 3.
- 4) Find the volume of solid formed by revolving a line y = x about x axis from x = 0 to 4.

<u>4 marks</u>-

- 1) Find the area of the circle $x^2 + y^2 = 25$ using integration.
- 2) Find the area of the ellipse $9x^2 + 4y^2 = 36$ using integration.
- 3) Find the area bounded by the parabola $y^2 = 4x$ and the line 2x y = 4.
- 4) Find the area of the circle $y^2 2x = 0$ and $y^2 + 4x 12 = 0$.
- 5) Find the area between the curves $y = \sin x$ and $y = \cos x$ for $[0, 90^{\circ}]$.
- 6) Find the volume of sphere formed by revolving a semicircle $x^2 + y^2 = 25$ about x axis.

7) Find the volume of solid formed by revolving y = r about x axis bounded by x = hand y axis.

<u>Chapter- 2</u>(DIFFERENTIAL EQUATION) ------(CO 4)

<u>2 marks:</u>

1) Find the order and degree of

i)
$$\frac{d^2y}{dx^2} = \sqrt{1 + (\frac{dy}{dx})^3}$$
 ii) $x^2(\frac{d^2y}{dx^2})^2 + y(\frac{dy}{dx})^3 + y^2 = 0$ ---- (2M Each)

2) Form a differential equation by eliminating constants from

i)
$$xy = a^2$$
 ii) $y^2 = 4ax$. ---- (2M Each)

- 3) Solve $\sec^2 x \cdot \tan y \, dx + \sec^2 y \cdot \tan x \, dy = 0$.
- 4) Solve $\frac{dy}{dx} = e^{3x-2y} + x^2 \cdot e^{-2y}$

4 marks:

1) Solve $xy \log y \, dx + (1 + x^2) dy = 0$ 2) Solve $\frac{dy}{dx} = (4x + y + 1)^2$ 3) Solve $x \log x \frac{dy}{dx} + y = 2 \log x$ 4) Solve $\frac{dy}{dx} + y \tan x = \cos^2 x$ 5) Solve $x \frac{dy}{dx} + y = \log x$

<u>Chapter- 3 (APPLICATON OF DIFFERENTIAL EQUATION)</u> ------(CO 4) <u>2 marks:</u>

- 1) Find the equation of curve passing through (2, 3) having slope 2x 4.
- 2) The velocity of a particle is given by $V = t^2 6t + 7$. Find distance covered in 3 seconds.

4 marks:

- 1) If the body obeys the law of motion $v \frac{dv}{dx} = -cv bv^2$, find the velocity of particle on terms of x if it starts from rest.
- 2) The acceleration of a particle is given by $\frac{d^2x}{dt^2} = 3t^2 6t + 8$ find the distance covered in 2 sec. Given that v = 0, x = 0 at t = 0.

(For Mechanical & Chemical Group)

<u>Chapter- 4</u>(PROBABILITY DISTRIBUTION) ------(CO 5)

2 marks:

- 1) An unbiased coin is tossed 5 times, find the probability of getting at least 4 heads.
- 2) In poisson distribution, if P(3) = P(4), find m.
- 3) Fit a Poisson distribution to set of following observations

Xi	0	1	2	3	4
f_i	122	60	15	2	1

4 marks:

- If 30% of the bulbs are defective, find the probability that out of 4 bulbs Selected a) one is defective b) at the most two are defective.
- 2) Using Poisson's distribution, find the probability that the ace of spade will bedrown from a pack of cards at least once in 104 consecutive trials.
- 3) Assuming that 2 in 10 industrial accidents are due to fatigue, find the probability that exactly 2 out of 8 accidents will be due to fatigue.
- 4) A multiple choice test contains 20 questions. Each question has five choices for correct answer. What is the probability of making an 80% with randomguessing?

5) 95% of students at college are between 1.1 m and 1.7m fall. Find mean and S. D., assuming normal distribution.

(For Computer Group)

<u>Chapter- 4</u>(NUMERICAL METHODS) ------(CO 5)

2 marks:

- 1) Find the approximate root of the equation $x^3 9x + 1 = 0$ lies between 2 and 3 using bisection method (one Iteration)
- 2) Using Bisection method find the approximate value of $\sqrt{10}$ perform one Iteration
- 3) By using method of False Position find root of equation $x^2 + x 1 = 0$ in the interval (0,1) (perform one Iteration)
- 4) Solve following equations for x and y using Gauss-Elimination Method

$$x + y + z = 4$$
; $2x + y + z = 5$; $3x + 2y + z = 7$

5) Solve following equations for y and z using Gauss-Elimination Method

$$x + y + z = 6$$
; $3x - y + 3z = 10$; $5x + 5y - 4z = 3$

- 6) Show that root of the equation $x \cdot \log x = 1.2$ lies between (1,2)
- 7) Show that root of the equation $3x \cos x 1 = 0$ lies between (0,1)

4 marks:

12)

8) Solve using Gauss-Elimination Method:

2x - 3y + 4z = 7; 5x - 2y + 2z = 7; 6x - 3y + 10z = 239) Solve using Jacobi's Method:

10x + y + 2z = 13; 3x + 10y + z = 14; 2x + 3y + 10z = 1510) Solve using Jacobi's Method:

5x - y + z = 10; 2x + 4y = 12; x + y + 5z = -1

11) Solve using Gauss-Seidal Method:

10x + y + z = 12; x + 10y + z = 12; x + y + 10z = 12Solve using Gauss-Seidal Method:

20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25

- 13) Find approximate root of the equation $x^3 2x 5 = 0$ using Bisection method in the interval (2,3) carry out three iterations.
- 14) Find approximate root of the equation $x^3 + 2x^2 8 = 0$ using Regula Falsi method carry out three iterations.
- 15) Evaluate $\sqrt[3]{7}$ using Newton Raphson Method carry out two iterations.

(For Electronics Group)

<u>Chapter 4</u> (COMPLEX NUMBER) ------(CO 5)

2 marks-

- 1) Find modulus and amplitude of $-1 + i\sqrt{3}$
- 2) If $Z_1 = 4 5i$ and $Z_2 = 3 + 7i$ find $|3Z_1 2Z_2|$ and $|\frac{Z_1}{Z_2}|$
- 3) If Z = 1 + 2i find value of $Z^2 2Z + 6$
- 4) Express in (x + iy) from $\frac{2-3i}{1+2i}$

4 marks:

- 1) Express in polar form $(-2 2\sqrt{3}i)$
- 2) Show that $(1 + i)^8 + (1 + i)^8 = 32$.
- 3) Find real and imaginary parts of $+z^{-1}$ where $z = \frac{3+4i}{1-i}$.

<u>Chapter 5</u> (LAPLACE TRANSFORM) ------(CO 5)

2 marks-

- 1) Obtain : $L\{5 + 2t e^{-t}\}$
- 2) Obtain : $L{5 \sinh 3t 3 \cos 4t}$
- 3) Obtain : $L{\sin^3 t}$

4) Obtain :
$$L^{-1}\left\{\frac{2}{s-3} + \frac{3s}{s^2+9} + \frac{4}{s^2+16}\right\}$$

5) Obtain :
$$L^{-1} \left\{ \frac{3}{3s-2} + \frac{3}{s^2+2} \right\}$$

4 marks:

1) Use Laplace transform to solve the differential equation:

$$y' - y = 3.e^{-2t}$$
, if $y(0) = -1$.

- 2) Solve using Laplace transform $\frac{dx}{dt} + 2x = e^{-t}$ given that x(0) = 2.
- 3) Solve using Laplace transform 3y' 2y = 4. e^{2t} given: y = 1 when t = 0.

4) Use Laplace transform to solve the differential equation:

$$\frac{dy}{dx} = 3y + 1 - e^t, \qquad given: y = -1 \text{ when } t = 0.$$